login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of (Pi/(3*sqrt(3)))^(1/3), the sphericity of the octahedron.
4

%I #23 Jan 07 2023 12:23:11

%S 8,4,5,5,8,2,5,2,0,5,3,6,5,8,7,5,6,6,3,2,7,1,8,8,1,5,9,7,7,3,0,6,6,2,

%T 5,2,5,0,2,0,0,6,6,8,2,3,4,0,8,5,9,5,9,8,0,0,6,9,9,6,1,1,2,7,1,0,3,1,

%U 1,8,7,5,0,8,7,4,5,5,8,8,3,0,2,6,7,4

%N Decimal expansion of (Pi/(3*sqrt(3)))^(1/3), the sphericity of the octahedron.

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Sphericity">Sphericity</a>.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>

%F Equals cube root of A093602. - _Michel Marcus_, May 27 2016

%e 0.84558252053658756632718815977306625250200668234085959800699611...

%t RealDigits[Surd[Pi/(3Sqrt[3]),3],10,120][[1]] (* _Harvey P. Dale_, Jan 07 2023 *)

%o (PARI) default(realprecision, 50080); my(x=(Pi/(3*sqrt(3)))^(1/3)); for(k=1, 100, my(d=floor(x)); x=(x-d)*10; print1(d, ", "))

%Y Cf. A093602, A273633, A273634, A273636, A273637.

%K nonn,cons

%O 0,1

%A _Felix Fröhlich_, May 27 2016

%E Definition corrected by _Georg Fischer_, Jul 12 2021