login
Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 659", based on the 5-celled von Neumann neighborhood.
0

%I #12 Jul 26 2024 21:16:42

%S 1,5,49,225,961,3969,16129,65025,261121,1046529,4190209,16769025,

%T 67092481,268402689,1073676289,4294836225

%N Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 659", based on the 5-celled von Neumann neighborhood.

%C Initialized with a single black (ON) cell at stage zero.

%C Conjecture: Rules 667, 723, 731, 931, 939, 947, 955, 995, 1003, 1011 and 1019 also generate this sequence. - _Lars Blomberg_, Jul 18 2016

%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%F Conjecture: a(n) = 4*4^n - 4*2^n + 1, n>1. - _Lars Blomberg_, Jul 18 2016

%F Conjectures from _Colin Barker_, Dec 01 2016: (Start)

%F a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3) for n>4.

%F G.f.: (1 - 2*x + 28*x^2 - 56*x^3 + 32*x^4) / ((1 - x)*(1 - 2*x)*(1 - 4*x)).

%F (End)

%t CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}];

%t code=659; stages=128;

%t rule=IntegerDigits[code,2,10];

%t g=2*stages+1; (* Maximum size of grid *)

%t a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *)

%t ca=a;

%t ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}];

%t PrependTo[ca,a];

%t (* Trim full grid to reflect growth by one cell at each stage *)

%t k=(Length[ca[[1]]]+1)/2;

%t ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];

%t on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *)

%t Part[on,2^Range[0,Log[2,stages]]] (* Extract relevant terms *)

%Y Cf. A273384.

%K nonn,more

%O 0,2

%A _Robert Price_, May 21 2016

%E a(8)-a(15) from _Lars Blomberg_, Jul 18 2016