login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273342
Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having length of first column k (n>=2, k>=1).
2
1, 1, 1, 2, 2, 1, 5, 4, 3, 1, 13, 10, 7, 4, 1, 35, 27, 18, 11, 5, 1, 97, 75, 50, 30, 16, 6, 1, 275, 213, 143, 86, 47, 22, 7, 1, 794, 616, 416, 253, 140, 70, 29, 8, 1, 2327, 1808, 1227, 754, 424, 218, 100, 37, 9, 1, 6905, 5372, 3661, 2269, 1295, 681, 327, 138, 46, 10, 1, 20705, 16127, 11030, 6885, 3978, 2133, 1056, 475, 185, 56, 11, 1
OFFSET
2,4
COMMENTS
Sum of entries in row n = A082582(n).
Sum(k*T(n,k), k>=1) = A273343(n).
LINKS
M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86-112.
Emeric Deutsch, S Elizalde, Statistics on bargraphs viewed as cornerless Motzkin paths, arXiv preprint arXiv:1609.00088, 2016
FORMULA
G.f.: G(x,z) satisfies (1 - t - tz^2 + t^2 z)G^2 - t(1 - z)(1- z - tz - tz^2)G + t^2 z^2 (1 - z) = 0 (z marks semiperimeter, x marks length of first column).
EXAMPLE
Row 4 is 2,2,1 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] which, clearly, have first-column lengths 1, 1, 2, 2, 3.
MAPLE
eq := (1-t-t*z^2+t^2*z)*G^2-t*(1-z)*(1-z-t*z-t*z^2)*G+t^2*z^2*(1-z) = 0: G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 23)): for n from 2 to 20 do P[n] := sort(expand(coeff(Gser, z, n))) end do: for n from 2 to 20 do seq(coeff(P[n], t, j), j = 1 .. n-1) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n, y, t, h) option remember; expand(
`if`(n=0, (1-t), `if`(t<0, 0, b(n-1, y+1, 1, h))+
`if`(t>0 or y<2, 0, b(n, y-1, -1, 0))+
`if`(y<1, 0, b(n-1, y, 0, 0)*`if`(h=1, z^y, 1))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=1..degree(p)))(b(n, 0$2, 1)):
seq(T(n), n=2..20); # Alois P. Heinz, Jun 06 2016
MATHEMATICA
b[n_, y_, t_, h_] := b[n, y, t, h] = Expand[If[n == 0, 1 - t, If[t < 0, 0, b[n - 1, y + 1, 1, h]] + If[t > 0 || y < 2, 0, b[n, y - 1, -1, 0]] + If[y < 1, 0, b[n - 1, y, 0, 0]*If[h == 1, z^y, 1]]]];
T[n_] := Function [p, Table[Coefficient[p, z, i], {i, 1, Exponent[p, z]}]][ b[n, 0, 0, 1]];
Table[T[n], {n, 2, 20}] // Flatten (* Jean-François Alcover, Jul 29 2016, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A184051 A121460 A105292 * A276067 A125177 A125178
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, May 21 2016
STATUS
approved