login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273282(n)^Omega(n), where Omega = A001222.
5

%I #28 Jun 03 2016 15:00:12

%S 2,3,4,5,4,7,8,9,9,11,8,13,9,9,16,17,8,19,8,9,9,23,16,25,25,27,27,29,

%T 27,31,32,25,25,25,16,37,25,25,16,41,27,43,27,27,25,47,32,49,27,49,27,

%U 53,16,49,16,49,49,59,16,61,49,27,64,49,27,67,27,49,27,71,32,73,49

%N A273282(n)^Omega(n), where Omega = A001222.

%C a(n) <= A079867(n) for any n>=2.

%C a(n) = n iff n is the power of a prime (A246655).

%H Giuseppe Coppoletta, <a href="/A273284/b273284.txt">Table of n, a(n) for n = 2..10000</a>

%F a(n) = A273282(n)^A001222(n).

%e a(33) = 25 because Omega(33)=2 and 5^2 < 33 < 7^2.

%e If n= 3^3 * 31^2 * 67 then a(n)= 7^6 and A273285(n)=11^6 because Omega(n)=6 and 7^6 < n < 11^6.

%t Table[NextPrime[(Floor[n^(1/PrimeOmega[n])] + 1) , -1]^PrimeOmega[n], {n,2,50}] (* _G. C. Greubel_, May 26 2016 *)

%o (Sage) s=sloane.A001222; [previous_prime(floor(n^(1/s(n)))+1)^s(n) for n in (2..74)]

%o (PARI) a(n) = my(bn=bigomega(n)); precprime(sqrtnint(n, bn))^bn; \\ _Michel Marcus_, May 24 2016

%Y Cf. A273282, A273285, A273290, A079867, A246655, A001222.

%K nonn

%O 2,1

%A _Giuseppe Coppoletta_, May 20 2016