Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #42 Jan 22 2019 03:15:57
%S 1,3,6,13,27,51,91,159,273,455,738,1179,1860,2886,4410,6667,9981,
%T 14781,21671,31512,45474,65113,92547,130689,183439,255930,355017,
%U 489895,672672,919152,1250107,1692846,2282895,3066180,4102224,5468160,7263217,9614436,12684633,16682276
%N G.f. is the cube of the g.f. of A006950.
%H Robert Israel, <a href="/A273226/b273226.txt">Table of n, a(n) for n = 0..10000</a>
%H M. D. Hirschhorn and J. A. Sellers, <a href="http://dx.doi.org/10.1007/s11139-010-9225-6">Arithmetic properties of partitions with odd parts distinct</a>, Ramanujan J. 22 (2010), 273--284.
%H L. Wang, <a href="http://dx.doi.org/10.1142/S1793042115500773">Arithmetic properties of partition triples with odd parts distinct</a>, Int. J. Number Theory, 11 (2015), 1791--1805.
%H L. Wang, <a href="http://dx.doi.org/10.1017/S0004972715000647">Arithmetic properties of partition quadruples with odd parts distinct</a>, Bull. Aust. Math. Soc., doi:10.1017/S0004972715000647.
%H L. Wang, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Wang2/wang31.html">New congruences for partitions where the odd parts are distinct</a>, J. Integer Seq. (2015), article 15.4.2.
%F G.f.: Product_{k>=1} (1 + x^k)^3 / (1 - x^(4*k))^3, corrected by _Vaclav Kotesovec_, Mar 25 2017.
%F a(n) ~ 3*exp(sqrt(3*n/2)*Pi) / (16*n^(3/2)). - _Vaclav Kotesovec_, Mar 25 2017
%p N:= 50:
%p G:= mul((1+x^k)^3,k=1..N)/mul((1-x^(4*k))^3,k=1..N/4):
%p S:= series(G,x,N+1):
%p seq(coeff(S,x,j),j=0..N); # _Robert Israel_, Jan 21 2019
%t s = QPochhammer[-1, x]^3/(8*QPochhammer[x^4, x^4]^3) + O[x]^40; CoefficientList[s, x] (* _Jean-François Alcover_, May 20 2016 *)
%Y Cf. A006950.
%K nonn
%O 0,2
%A _M.S. Mahadeva Naika_, May 18 2016
%E Edited by _N. J. A. Sloane_, May 26 2016