login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A273163
P-defects p - N(p) of the congruence y^2 == x^3 + x^2 + 4*x + 4 (mod p) for primes p, where N(p) is the number of solutions given for p = prime(n) by A272207(n).
5
0, -2, -1, 2, 0, 2, -6, -4, 6, 6, -4, 2, 6, -10, -6, -6, 12, 2, 2, -12, 2, 8, 6, -6, 2, 6, 14, -6, 2, -6, 2, 0, 18, -4, -6, 20, -22, -10, 18, -6, -12, -10, -12, 26, 18, 8, -16, -10, -6, 14, -6, -24, 14, 0, -6, -18, 18, 20, 26, 6
OFFSET
1,2
COMMENTS
The modularity pattern series is the expansion of the 39th modular cusp form of weight 2 and level N = 20, given in Table I of the Martin reference, i.e., eta^2(2*z)*eta^2(10*z) = Sum_{n >= 1} c(n)*q^n in powers of q = exp(2*Pi*i*z), with Im(z) > 0, where eta is the Dedekind function. c(prime(n)) = a(n), also for the bad primes 2 and 5 (the discriminant of this elliptic curve is -2^4*5^2). See also A030205 for the expansion in powers of q^2 (after deleting the factor q^(-1/2)): A030205((prime(n)-1)/2) = a(n), n >= 2.
See the comment on the Martin-Ono reference in A272207 which implies that eta^2(2*z) * eta^2(10*z) provides the modularity sequence for this elliptic curve.
The elliptic curve y^2 = x^3 + x^2 - x has the same p-defects.
For the above defined q-series coefficients c one seems to have for primes not 2 and 5 c(prime(n)^k) = (sqrt(prime(n)))^k*S(k, a(n)/sqrt(prime(n))) with Chebyshev's S polynomials (A049310), for n = 2, and n >= 4 and k >= 2. This corresponds to alpha-multiplicativity with alpha(x) = x (weight 2) except for primes 2 and 5, obtainable formally from Sum_{n>=1, without factors 2 or 5} c(n)/n^s = Product_{n=2,n>=4} 1/(1 - a(n)/prime(n)^s + prime(n)/prime(n)^{2*s}) (absolute convergence of the product seems to hold for Re(s) > 1 needed for the prime 3 factor). For alpha-multiplicativity see the Apostol reference, pp. 138-139 (exercise 6). c(2*k) = 0, c(2*k+1) = A030205(k), k >= 0. Thus c(2^k) = c(2)^k = 0, and it seems that c(5^k) = A030205((5^k-1)/2) = c(5)^k = (-1)^k, for k >= 1. Then one has multiplicativity of {c(n)} with the given c(p^k) formula.
For this multiplicity see the Michael Somos Oct 31 2005 comment on A030205, where c(n) is called b(n). - Wolfdieter Lang, May 24 2016
The Dirichlet sum could then be written as Sum_{n>=1} c(n)/n^s = 1/(1 - (-1)/5^s)* Product_{n=2,n>=4} 1/(1 - a(n)/prime(n)^s + prime(n)/prime(n)^{2*s}).
LINKS
FORMULA
a(n) = prime(n) - A272207(n), n >= 1, where A272207(n) is the number of solutions to the congruence y^2 == x^3 + x^2 + 4*x + 4 (mod prime(n)).
EXAMPLE
{c(n)} multiplicativity test for n = 3^2*5^2 = 225: c(225) = A030205(112) = +1. c(3^2*5^2) = c(3^2)*c(5^2) = (3*S(2, a(2)/sqrt(3)))*(-1)^2 = ((-2)^2 - 3)*(+1) = +1.
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, May 20 2016
STATUS
approved