login
First differences of number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 597", based on the 5-celled von Neumann neighborhood.
1

%I #12 Jul 26 2024 21:16:41

%S 7,12,21,16,47,12,77,0,119,-20,165,-48,223,-84,285,-128,359,-180,437,

%T -240,527,-308,621,-384,727,-468,837,-560,959,-660,1085,-768,1223,

%U -884,1365,-1008,1519,-1140,1677,-1280,1847,-1428,2021,-1584,2207,-1748,2397

%N First differences of number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 597", based on the 5-celled von Neumann neighborhood.

%C Initialized with a single black (ON) cell at stage zero.

%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

%H Robert Price, <a href="/A273147/b273147.txt">Table of n, a(n) for n = 0..127</a>

%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%F Conjectures from _Colin Barker_, May 16 2016: (Start)

%F a(n) = -a(n-1)+a(n-2)+a(n-3)+a(n-4)+a(n-5)-a(n-6)-a(n-7) for n>6.

%F G.f.: (7+19*x+26*x^2+18*x^3+23*x^4+3*x^5) / ((1-x)^2*(1+x)^3*(1+x^2)).

%F (End)

%t CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}];

%t code=597; stages=128;

%t rule=IntegerDigits[code,2,10];

%t g=2*stages+1; (* Maximum size of grid *)

%t a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *)

%t ca=a;

%t ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}];

%t PrependTo[ca,a];

%t (* Trim full grid to reflect growth by one cell at each stage *)

%t k=(Length[ca[[1]]]+1)/2;

%t ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];

%t on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *)

%t Table[on[[i+1]]-on[[i]],{i,1,Length[on]-1}] (* Difference at each stage *)

%Y Cf. A273144.

%K sign,easy

%O 0,1

%A _Robert Price_, May 16 2016