Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 May 13 2016 22:40:49
%S 1,1,2,2,2,3,2,1,2,2,1,3,3,4,2,2,3,5,2,2,4,1,1,3,3,4,7,4,4,1,1,1,4,4,
%T 2,4,4,6,5,2,5,7,3,3,3,4,1,3,5,4,5,6,2,8,1,4,4,4,3,2,5,5,4,2,5,7,2,3,
%U 4,5,1,5,4,5,6,5,3,4,3,2
%N Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with 2*x*y + y*z - z*w - w*x a square, where w is a positive integer and x,y,z are nonnegative integers with x <= y.
%C Conjecture: (i) a(n) > 0 for all n > 0, and a(n) = 1 only for n = 1, 11, 31, 47, 55, 71, 105, 115, 119, 253, 383, 385, 4^k*m (k = 0,1,2,... and m = 2, 22, 23, 30, 330).
%C (ii) Each n = 0,1,2,... can be written as x^2 + y^2 + z^2 + w^2 with (x+y)*(z+w) a square, where w is an integer and x,y,z are nonnegative integers with x <= y >= z >= |w|.
%C See arXiv:1604.06723 for more conjectural refinements of Lagrange's four-square theorem.
%H Zhi-Wei Sun, <a href="/A273021/b273021.txt">Table of n, a(n) for n = 1..10000</a>
%H Zhi-Wei Sun, <a href="http://arxiv.org/abs/1604.06723">Refining Lagrange's four-square theorem</a>, arXiv:1604.06723 [math.GM], 2016.
%e a(1) = 1 since 1 = 0^2 + 0^2 + 0^2 + 1^2 with 0 = 0 and 2*0*0 + 0*0 - 0*1 - 1*0 = 0^2.
%e a(2) = 1 since 2 = 0^2 + 1^2 + 0^2 + 1^2 with 0 < 1 and 2*0*1 + 1*0 - 0*1 - 1*0 = 0^2.
%e a(11) = 1 since 11 = 0^2 + 1^2 + 3^2 + 1^2 with 0 < 1 and 2*0*1 + 1*3 - 3*1 - 1*0 = 0^2.
%e a(22) = 1 since 22 = 0^2 + 3^2 + 2^2 + 3^2 with 0 < 3 and 2*0*3 + 3*2 - 2*3 - 3*0 = 0^2.
%e a(23) = 1 since 23 = 2^2 + 3^2 + 3^2 + 1^2 with 2 < 3 and 2*2*3 + 3*3 - 3*1 - 1*2 = 4^2.
%e a(30) = 1 since 30 = 1^2 + 3^2 + 2^2 + 4^2 with 1 < 3 and 2*1*3 + 3*2 - 2*4 - 4*1 = 0^2.
%e a(31) = 1 since 31 = 3^2 + 3^2 + 2^2 + 3^2 with 3 = 3 and
%e 2*3*3 + 3*2 - 2*3 -3*3 = 3^2.
%e a(47) = 1 since 47 = 3^2 + 5^2 + 2^2 + 3^2 with 3 < 5 and 2*3*5 + 5*2 - 2*3 - 3*3 = 5^2.
%e a(55) = 1 since 55 = 1^2 + 7^2 + 2^2 + 1^2 with 1 < 7 and 2*1*7 + 7*2 - 2*1 - 1*1 = 5^2.
%e a(71) = 1 since 71 = 1^2 + 5^2 + 3^2 + 6^2 with 1 < 5 and 2*1*5 + 5*3 - 3*6 - 6*1 = 1^2.
%e a(105) = 1 since 105 = 1^2 + 6^2 + 2^2 + 8^2 with 1 < 6 and 2*1*6 + 6*2 - 2*8 - 8*1 = 0^2.
%e a(115) = 1 since 115 = 1^2 + 8^2 + 7^2 + 1^2 with 1 < 8 and 2*1*8 + 8*7 - 7*1 - 1*1 = 8^2.
%e a(119) = 1 since 119 = 1^2 + 6^2 + 1^2 + 9^2 with 1 < 6 and 2*1*6 + 6*1 - 1*9 - 9*1 = 0^2.
%e a(253) = 1 since 253 = 2^2 + 8^2 + 11^2 + 8^2 with 2 < 8 and 2*2*8 + 8*11 - 11*8 - 8*2 = 4^2.
%e a(330) = 1 since 330 = 4^2 + 13^2 + 8^2 + 9^2 with 4 < 13 and 2*4*13 + 13*8 - 8*9 - 9*4 = 10^2.
%e a(383) = 1 since 383 = 9^2 + 14^2 + 5^2 + 9^2 with 9 < 14 and 2*9*14 + 14*5 - 5*9 - 9*9 = 14^2.
%e a(385) = 1 since 385 = 4^2 + 12^2 + 0^2 + 15^2 with 4 < 12 and 2*4*12 + 12*0 - 0*15 - 15*4 = 6^2.
%t SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]
%t Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&SQ[y*(2x+z)-Sqrt[n-x^2-y^2-z^2]*(x+z)],r=r+1],{x,0,Sqrt[(n-1)/2]},{y,x,Sqrt[n-1-x^2]},{z,0,Sqrt[n-1-x^2-y^2]}];Print[n," ",r];Continue,{n,1,80}]
%Y Cf. A000118, A000290, A260625, A261876, A262357, A267121, A268197, A268507, A269400, A270073, A271510, A271513, A271518, A271608, A271665, A271714, A271721, A271724, A271775, A271778, A271824, A272084, A272332, A272351, A272620, A272888, A272977.
%K nonn
%O 1,3
%A _Zhi-Wei Sun_, May 13 2016