login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of permutations of [n] whose cycle lengths are Fibonacci numbers.
7

%I #14 Jul 22 2018 11:14:49

%S 1,1,2,6,18,90,420,2220,19020,130860,1096920,9862920,83843640,

%T 1411202520,16144792560,203091829200,2989264122000,37012939750800,

%U 597962683188000,8681244913692000,126467701221607200,5006833609034743200,95602098255580238400

%N Number of permutations of [n] whose cycle lengths are Fibonacci numbers.

%H Alois P. Heinz, <a href="/A273001/b273001.txt">Table of n, a(n) for n = 0..451</a>

%F E.g.f.: exp(Sum_{n>=2} x^F(n)/F(n)) with F = A000045.

%p a:= proc(n) option remember; `if`(n=0, 1, add(

%p `if`(issqr(5*j^2+4) or issqr(5*j^2-4),

%p a(n-j)*(j-1)!*binomial(n-1, j-1), 0), j=1..n))

%p end:

%p seq(a(n), n=0..25);

%t a[n_] := a[n] = If[n == 0, 1, Sum[If[IntegerQ @ Sqrt[5*j^2+4] || IntegerQ @ Sqrt[5*j^2-4], a[n-j]*(j-1)!*Binomial[n-1, j-1], 0], {j, 1, n}]]; Table[ a[n], {n, 0, 25}] (* _Jean-François Alcover_, Jan 30 2017, translated from Maple *)

%Y Cf. A000045, A193374, A205801, A218002, A272603, A273994, A317128.

%K nonn

%O 0,3

%A _Alois P. Heinz_, May 12 2016