The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A272981 Least prime k>1 such that the sum of divisors of powers k^e, 1 <= e <= n, are divisible by the number their divisors, d(k^e). 3

%I

%S 3,7,7,31,31,211,211,211,211,2311,2311,120121,120121,120121,120121,

%T 4084081,4084081,106696591,106696591,106696591,106696591,892371481,

%U 892371481,892371481,892371481,892371481,892371481,71166625531,71166625531,200560490131,200560490131

%N Least prime k>1 such that the sum of divisors of powers k^e, 1 <= e <= n, are divisible by the number their divisors, d(k^e).

%C For 1<n<11 A272981(n) = A092967(n+1).

%C The different numbers are listed in A073917.

%H Paolo P. Lava, <a href="/A272981/b272981.txt">Table of n, a(n) for n = 1..100</a>

%e sigma(3) / d(3) = 4 / 2 = 2 but sigma(3^2) / d(3^2) = 13 / 3;

%e sigma(7) / d(7) = 8 / 2 = 4, sigma(7^2) / d(7^2) = 57 / 3 = 19, sigma(7^3) / d(7^3) = 400 / 4 = 100 but sigma(7^4) / d(7^4) = 2801 / 5.

%p with(numtheory): P:= proc(q) local a,j,k,ok,p; global n; a:=2;

%p for k from 1 to q do for n from a to q do ok:=1;

%p for j from 1 to k do if not type(sigma(n^j)/tau(n^j),integer) then ok:=0; break; fi; od;

%p if ok=1 then a:=n; print(n); break; fi; od; od; end: P(10^9);

%t Table[SelectFirst[Range[2, 10^6], AllTrue[#^Range@ n, Divisible[DivisorSigma[1, #], DivisorSigma[0, #]] &] &], {n, 15}] (* _Michael De Vlieger_, May 12 2016, Version 10 *)

%Y Cf. A000005, A000203, A073917, A092967, A272980.

%K nonn

%O 1,1

%A _Paolo P. Lava_, May 12 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 26 08:42 EDT 2021. Contains 346294 sequences. (Running on oeis4.)