login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows, T(n,k) are covariances of inverse power traces of complex Wishart matrices with parameter c=2, for n>=1 and 1<=k<=n.
0

%I #18 Jul 20 2019 12:27:14

%S 4,24,160,132,936,5700,720,5312,33264,198144,3940,29880,190980,

%T 1155600,6823620,21672,167712,1088856,6670656,39786120,233908896,

%U 119812,941640,6189540,38300976,230340740,1363667256,7997325700

%N Triangle read by rows, T(n,k) are covariances of inverse power traces of complex Wishart matrices with parameter c=2, for n>=1 and 1<=k<=n.

%C These numbers provide the covariances of power traces of the time-delay matrix when the scattering matrix belongs to the Dyson ensembles.

%C Relation with A047781 and A002002. See eq. (60) and (61) in Cunden et al., J. Phys. A: Math. Theor. 49, 18LT01 (2016).

%D F. D. Cunden, "Statistical distribution of the Wigner-Smith time-delay matrix moments for chaotic cavities", Phys. Rev. E 91, 060102(R) (2015).

%D F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, "Correlators for the Wigner-Smith time-delay matrix of chaotic cavities", J. Phys. A: Math. Theor. 49, 18LT01 (2016).

%D F. D. Cunden, F. Mezzadri, N. O'Connell and N. Simm, "Moments of Random Matrices and Hypergeometric Orthogonal Polynomials", Commun. Math. Phys. 369, 1091-1145 (2019).

%H F. D. Cunden, <a href="http://arxiv.org/abs/1412.2172">Statistical distribution of the Wigner-Smith time-delay matrix moments for chaotic cavities</a>, arXiv:1412.2172 [cond-mat.mes-hall], 2014-2015.

%H F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, <a href="http://arxiv.org/abs/1601.06690">Correlators for the Wigner-Smith time-delay matrix of chaotic cavities</a>, arXiv:1601.06690 [math-ph], 2016.

%H F. D. Cunden, F. Mezzadri, N. O'Connell and N. Simm, <a href="https://arxiv.org/abs/1805.08760">Moments of Random Matrices and Hypergeometric Orthogonal Polynomials</a>, arXiv:1805.08760 [math-ph], 2018.

%F G.f.: ((x*y)/(x-y)^2)*((x*y-3(x+y)+1)/(sqrt(x^2-6x+1)*sqrt(y^2-6y+1))-1).

%F T(n,1)/4 = A050151(n) for n>=1. - _Peter Luschny_, May 08 2016

%e Triangle starts:

%e 4;

%e 24, 160;

%e 132, 936, 5700;

%e 720, 5312, 33264, 198144;

%e 3940, 29880, 190980, 1155600, 6823620;

%p P := (n,k) -> simplify(n*hypergeom([1-k,k+1],[1],-1)*hypergeom([1-n,n+1],[2],-1)): seq(seq(4*(n*k)*(P(n,k)+P(k,n))/(n+k),k=1..n),n=1..7); # _Peter Luschny_, May 08 2016

%t Clear["Global`*"];(*Wigner-Smith Covariance*)

%t P[k_] := Sum[Binomial[k - 1, j] Binomial[k + j, j], {j, 0, k - 1}]

%t Q[k_] := Sum[Binomial[k, j + 1] Binomial[k + j, j], {j, 0, k - 1}]

%t a[k1_, k2_] := 4 (k1 k2)/(k1 + k2) (P[k1] Q[k2] + P[k2] Q[k1])

%t L = 10; Table[a[k, l], {k, 1, L}, {l, 1, k}]

%Y Cf. A002002, A047781, A050151.

%K nonn,tabl

%O 1,1

%A _Fabio Deelan Cunden_, May 08 2016