Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #37 Sep 08 2022 08:46:16
%S 3,23,11,31,17,37,23,43,41,61,47,67,53,73,59,79,83,103,89,109,107,127,
%T 131,151,137,157,173,193,179,199,191,211,251,271,257,277,263,283,293,
%U 313,311,331,317,337,347,367,353,373,359,379,389,409,401,421
%N Prime pairs of the form (p, p+20).
%C p and p+20 are not necessarily consecutive primes: (887, 907) is the first pair of consecutive primes that belongs to the sequence.
%H Seiichi Manyama, <a href="/A272816/b272816.txt">Table of n, a(n) for n = 1..10000</a>
%F a(2n+1) = A153419(n+1).
%e The prime pairs are (3, 23), (11, 31), (17, 37) etc.
%t Flatten[{#, # + 20}&/@Select[Prime[Range[200]], PrimeQ[# + 20] &]]
%o (Magma) &cat [[p, p+20]: p in PrimesUpTo(1000) | IsPrime(p+20)];
%o (Python)
%o from gmpy2 import is_prime
%o for n in range(1000):
%o if(is_prime(n) and is_prime(n+20)):
%o print('{}, {}'.format(n,n+20),end=', ')
%o # _Soumil Mandal_, May 14 2016
%Y Cf. A000040, A153419.
%Y Cf. similar sequences listed in A272815.
%Y Prime pairs of the form (p, p+k): A077800 (k=2), A094343 (k=4), A156274 (k=6), A156320 (k=8), A140445 (k=10), A156323 (k=12), A140446 (k=14), A272815 (k=16), A156328 (k=18), this sequence (k=20), A140447 (k=22).
%K nonn,easy
%O 1,1
%A _Vincenzo Librandi_, May 07 2016
%E Edited by _Bruno Berselli_, May 12 2016