login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that 2*k - 1 and 2*k + 1 are squarefree.
3

%I #28 Apr 24 2024 17:02:41

%S 1,2,3,6,7,8,9,10,11,15,16,17,18,19,20,21,26,27,28,29,30,33,34,35,36,

%T 39,42,43,44,45,46,47,48,51,52,53,54,55,56,57,64,65,66,69,70,71,72,75,

%U 78,79,80,81,82,83,89,90,91,92,93,96,97,98,99,100,101,102,105,106,107,108,109,110

%N Numbers k such that 2*k - 1 and 2*k + 1 are squarefree.

%C The asymptotic density of this sequence is 2 * Product_{p prime} (1 - 2/p^2) = 2 * A065474 = 0.645268... . - _Amiram Eldar_, Feb 10 2021

%H Robert Israel, <a href="/A272799/b272799.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = (A069977(n)+1)/2. - _Charles R Greathouse IV_, May 15 2016

%e a(1) = 1 because 2*1 - 1 = 1 is squarefree and 2*1 + 1 = 3 is squarefree.

%p Res:= NULL: count:= 0: state:= 1;

%p for n from 1 while count < 100 do

%p if numtheory:-issqrfree(2*n+1) then

%p if state = 1 then Res:= Res, n; count:= count+1;

%p else

%p state:= 1;

%p fi

%p else

%p state:= 0;

%p fi

%p od:

%p Res; # _Robert Israel_, Apr 15 2019

%t Select[Range[12^4], And[Or[# == 1, GCD @@ FactorInteger[#][[All, 2]] > 1], SquareFreeQ[# - 1], SquareFreeQ[# + 1]] &] (* _Michael De Vlieger_, May 08 2016 *)

%o (Magma) [n: n in [1..110] | IsSquarefree(2*n-1) and IsSquarefree(2*n+1)];

%o (PARI) is(n)=issquarefree(2*n-1) && issquarefree(2*n+1) \\ _Charles R Greathouse IV_, May 15 2016

%o (Python)

%o from itertools import count, islice

%o from sympy import factorint

%o def A272799_gen(startvalue=1): # generator of terms >= startvalue

%o return filter(lambda k:max(factorint((k<<1)-1).values(),default=1)==1 and max(factorint((k<<1)+1).values())==1, count(max(startvalue,1)))

%o A272799_list = list(islice(A272799_gen(),20)) # _Chai Wah Wu_, Apr 24 2024

%Y Cf. A005117, A065474, A069977, A226993.

%K nonn,easy

%O 1,2

%A _Juri-Stepan Gerasimov_, May 06 2016