login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n such that sigma(n) = concat(s,t) and n = s * t, where sigma(n) is the sum of the divisors of n.
2

%I #14 May 10 2016 00:43:46

%S 48,1040,1196,2720,6080,19080,116644,252800,796172,1014800,2370352,

%T 2796800,2864000,12200288,13499120,13716716,15252992,21938672,

%U 33883520,43218800,62496048,70240000,98392832,129704960,199361792,318836720,548444160,1218624080

%N Numbers n such that sigma(n) = concat(s,t) and n = s * t, where sigma(n) is the sum of the divisors of n.

%H Giovanni Resta, <a href="/A272778/b272778.txt">Table of n, a(n) for n = 1..46</a> (terms < 2.5*10^11)

%e sigma(48) = 124 = concat(12,4) and 12 * 4 = 48;

%e sigma(1196) = 2352 = concat(23,52) = and 23 * 52 = 1196.

%p with(numtheory): P:=proc(q) local a, b, c, i, n;

%p for n from 1 to q do c:=sigma(n); for i from 1 to ilog10(c) do

%p a:=trunc(c/10^i); b:=c-a*10^i; if a*b=n then print(n); break;

%p fi; od; od; end: P(10^9);

%t Select[Range[3*10^5], Function[n, Total@ Boole@ Function[k, n == First@ # Last@ # & /@ Map[FromDigits /@ TakeDrop[IntegerDigits@ k, #] &, Range[IntegerLength@ k - 1]]][DivisorSigma[1, n]] > 0]] (* _Michael De Vlieger_, May 07 2016, Version 10.2 *)

%Y Cf. A000203, A272779.

%K nonn,base

%O 1,1

%A _Paolo P. Lava_, May 06 2016

%E a(11)-a(28) from _Giovanni Resta_, May 06 2016