login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1, for n>=1 a(n) is the largest prime factor of A002182(n).
3

%I #7 Nov 01 2016 10:10:16

%S 1,2,2,3,3,3,3,3,5,5,5,5,5,5,7,7,7,7,7,7,7,7,7,7,11,7,7,11,11,11,11,

%T 11,11,11,11,11,11,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,17,13,

%U 17,17,17,17,17,17,17,17,17,17,19,17,17,19,19,17,19,19,19,19,19,19,19,19,19,19,19,19,23,19,23,19

%N a(1) = 1, for n>=1 a(n) is the largest prime factor of A002182(n).

%C For n>=1, the largest prime factor of the n-th highly composite number.

%H Joerg Arndt, <a href="/A272605/b272605.txt">Table of n, a(n) for n = 1..19999</a>

%e The first highly composite numbers with their prime factorizations:

%e n: A002182(n) = [factorization]

%e 1: 1 = []

%e 2: 2 = [2]

%e 3: 4 = [2^2]

%e 4: 6 = [2 * 3]

%e 5: 12 = [2^2 * 3]

%e 6: 24 = [2^3 * 3]

%e 7: 36 = [2^2 * 3^2]

%e 8: 48 = [2^4 * 3]

%e 9: 60 = [2^2 * 3 * 5]

%e 10: 120 = [2^3 * 3 * 5]

%e 11: 180 = [2^2 * 3^2 * 5]

%e 12: 240 = [2^4 * 3 * 5]

%e 13: 360 = [2^3 * 3^2 * 5]

%e 14: 720 = [2^4 * 3^2 * 5]

%e 15: 840 = [2^3 * 3 * 5 * 7]

%e 16: 1260 = [2^2 * 3^2 * 5 * 7]

%e 17: 1680 = [2^4 * 3 * 5 * 7]

%e 18: 2520 = [2^3 * 3^2 * 5 * 7]

%e 19: 5040 = [2^4 * 3^2 * 5 * 7]

%e 20: 7560 = [2^3 * 3^3 * 5 * 7]

%e 21: 10080 = [2^5 * 3^2 * 5 * 7]

%e 22: 15120 = [2^4 * 3^3 * 5 * 7]

%e 23: 20160 = [2^6 * 3^2 * 5 * 7]

%e 24: 25200 = [2^4 * 3^2 * 5^2 * 7]

%e 25: 27720 = [2^3 * 3^2 * 5 * 7 * 11]

%e 26: 45360 = [2^4 * 3^4 * 5 * 7]

%e 27: 50400 = [2^5 * 3^2 * 5^2 * 7]

%e 28: 55440 = [2^4 * 3^2 * 5 * 7 * 11]

%e 29: 83160 = [2^3 * 3^3 * 5 * 7 * 11]

%e 30: 110880 = [2^5 * 3^2 * 5 * 7 * 11]

%K nonn

%O 1,2

%A _Joerg Arndt_, Nov 01 2016