login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272603
Number of permutations of [n] whose cycle lengths are factorials.
5
1, 1, 2, 4, 10, 26, 196, 1072, 7484, 42940, 261496, 1477136, 15219832, 134828344, 1488515120, 13692017536, 130252442896, 1123580329232, 14639510308384, 173489066401600, 2528654220104096, 31472160333513376, 402634734214583872, 4645625988351336704, 25925035549644280991680
OFFSET
0,3
LINKS
FORMULA
E.g.f.: exp( sum(n>=1, x^(n!) / n! ) ).
MAPLE
a:= proc(n) option remember; local r, f, i;
if n=0 then 1 else r, f, i:= $0..2;
while f<=n do r:= r +a(n-f)*(f-1)!*
binomial(n-1, f-1); f, i:= f*i, i+1
od; r
fi
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jun 04 2016
MATHEMATICA
nmax = 4; egf = Exp[Sum[x^n!/n!, {n, 1, nmax}]] + O[x]^(nmax! + 1); CoefficientList[egf, x]*Range[0, nmax!]! (* Jean-François Alcover, Feb 19 2017 *)
PROG
(PARI) N=66; x='x+O('x^N); Vec(serlaplace(exp(sum(n=1, 10, x^(n!)/n!))))
CROSSREFS
Cf. A000142, A273001 (cycle lengths are Fibonacci numbers), A272602 (e.g.f.: exp( sum(n>=1, x^(n!) / n ) ) ), A273996, A317132.
Sequence in context: A148104 A179981 A086991 * A272602 A113066 A002459
KEYWORD
nonn
AUTHOR
Joerg Arndt, May 29 2016
STATUS
approved