Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 May 02 2016 07:48:34
%S 7,4,3,9,8,5,6,1,7,8,2,8,1,3,4,0,6,2,9,9,4,3,7,9,8,8,5,9,2,0,4,1,0,5,
%T 5,2,2,7,3,7,5,9,9,4,7,5,9,6,4,2,8,3,9,1,7,0,9,2,9,6,9,1,8,5,1,1,9,8,
%U 6,5,7,6,6,4,9,8,2,5,2,3,0,4,4,9,0,9,4,4,7,6,1,2,1,7,0,9,4,4
%N Decimal expansion of s_4, a 4-dimensional Steiner ratio analog.
%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.6 Steiner Tree Constants, p. 505.
%H D. Z. Du and W. D. Smith , <a href="http://dx.doi.org/10.1006/jcta.1996.0040">Disproofs of Generalized Gilbert-Pollak Conjecture on the Steiner Ratio in Three or More Dimensions</a>, Journal of Combinatorial Theory, Series A Volume 74, Issue 1, April 1996, Pages 115-130
%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/SteinerTree.html">Steiner Tree</a>.
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Steiner_tree_problem">Steiner Tree problem</a>
%F Minimal polynomial is 900 s^8 - 1863 s^6 + 2950 s^4 - 1511 s^2 + 164.
%e 0.7439856178281340629943798859204105522737599475964283917092969185...
%t s4 = Root[900 s^8 - 1863 s^6 + 2950 s^4 - 1511 s^2 + 164, s, 4];
%t RealDigits[s4, 10, 98][[1]]
%Y Cf. A010527, A220351, A248411.
%K nonn,cons
%O 0,1
%A _Jean-François Alcover_, May 02 2016