Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Aug 21 2023 12:29:53
%S 8,6,7,7,6,7,4,7,8,2,3,5,1,1,6,2,4,0,9,5,1,5,3,6,6,6,5,6,9,6,7,1,7,5,
%T 0,9,2,1,9,9,8,1,4,5,5,5,7,4,9,1,9,7,5,2,8,8,9,0,9,4,6,0,7,0,6,4,4,0,
%U 6,5,0,3,3,0,6,3,9,6,8,4,3,0,4,1,5,6,8,0,4,3,5,4,8,9,1,2,2,0,4,1,7,7,4,8,8
%N Decimal expansion of the edge length of a regular heptagon with unit circumradius.
%C The edge length e(m) of a regular m-gon is e(m) = 2*sin(Pi/m). In this case, m = 7, and the constant, a = e(7), is the smallest m for which e(m) is not constructible using a compass and a straightedge (see A004169). With an odd m, in fact, e(m) would be constructible only if m were a Fermat prime (A019434).
%H Stanislav Sykora, <a href="/A272487/b272487.txt">Table of n, a(n) for n = 0..2000</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Constructible_number">Constructible number</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Heptagon">Heptagon</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Regular_polygon">Regular polygon</a>
%H <a href="/index/Al#algebraic_06">Index entries for algebraic numbers, degree 6</a>
%F Equals 2*sin(Pi/7) = 2*cos(Pi*5/14).
%F Equals i^(-5/7) + i^(5/7). - _Gary W. Adamson_, Feb 12 2022
%e 0.8677674782351162409515366656967175092199814555749197528890946...
%t N[2*Sin[Pi/7], 25] (* _G. C. Greubel_, May 01 2016 *)
%t RealDigits[2*Sin[Pi/7],10,120][[1]] (* _Harvey P. Dale_, Mar 07 2020 *)
%o (PARI) 2*sin(Pi/7)
%Y Cf. A004169, A019434.
%Y Cf. A160389.
%Y Edge lengths of nonconstructible n-gons: A272488 (n=9), A272489 (n=11), A272490 (n=13), A255241 (n=14), A130880 (n=18), A272491 (n=19).
%K nonn,cons,easy
%O 0,1
%A _Stanislav Sykora_, May 01 2016