%I #23 Feb 16 2025 08:33:34
%S 213589,171329,135089,104323,78509,57149,39769,25919,15173,7129,1409,
%T 2341,4451,5227,4951,3881,2251,271,1873,4019,6029,7789,9209,10223,
%U 10789,10889,10529,9739,8573,7109,5449,3719,2069,673,271,541,109,1949,5273,10399,17669
%N Primes of the form abs(n^4 - 97n^3 + 3294n^2 - 45458n + 213589) in order of increasing nonnegative n.
%H Robert Price, <a href="/A272410/b272410.txt">Table of n, a(n) for n = 1..2676</a>
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Prime-GeneratingPolynomial.html">Prime-Generating Polynomials</a>
%e 78509 is in this sequence since abs(4^4 - 97*4^3 + 3294*4^2 - 45458*4 + 213589) = abs(256-6208+52704-181832+213589) = 78509 is prime.
%t n = Range[0, 100]; Select[n^4 - 97n^3 + 3294n^2 - 45458n + 213589, PrimeQ[#] &]
%Y Cf. A050268, A050267, A005846, A007641, A007635, A048988, A050265, A050266.
%Y Cf. A271980, A272030, A272074, A272075, A272159, A271143, A272284, A272302, A272437, A272443, A268200.
%K nonn,changed
%O 1,1
%A _Robert Price_, Apr 30 2016