login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272295
Let 2*n+1 have prime factorization Prod_i p_i^k_i; then a(n) = Prod_i v_i^k_i, where v_i = (1+p_i)/2 if p_i == 1 (mod 4), v_i = (1-p_i)/2 if p_i == 3(mod 4).
3
1, -1, 3, -3, 1, -5, 7, -3, 9, -9, 3, -11, 9, -1, 15, -15, 5, -9, 19, -7, 21, -21, 3, -23, 9, -9, 27, -15, 9, -29, 31, -3, 21, -33, 11, -35, 37, -9, 15, -39, 1, -41, 27, -15, 45, -21, 15, -27, 49, -5, 51, -51, 9, -53, 55, -19, 57, -33, 7, -27
OFFSET
1,3
COMMENTS
Completely multiplicative.
If n = prime(k), a(n) = A271974(k).
LINKS
Dimitris Valianatos, Comments on this sequence, April 25 2016
FORMULA
Sum_{n >= 1, n not divisible by 2 or 3} 1/a(n) = 1.
Conjecture: Sum_{n >= 1, n not divisible by 2 or 3} (mb(n)/a(n))^2 = 7/5 = 1.4;
mb(n) is the moebius function.
EXAMPLE
For n=35=5*7, 5-> 3 and 7->-3 so v(35)=3*(-3)=-9, for n=77=7*11, 7->(-3) and 11->(-5) so v(77)=(-3)*(-5)=35.
MATHEMATICA
Table[Times @@ Apply[Power[#1, #2] &, Transpose@ MapAt[Which[Mod[#, 4] == 1, (1 + #)/2, Mod[#, 4] == 3, (1 - #)/2, True, 0] & /@ # &, Transpose@ FactorInteger@ n, 1], 1], {n, 1, 120, 2}] (* Michael De Vlieger, Apr 24 2016 *)
PROG
(PARI) a(n)=if(n%2 == 0, return(0)); fa=factorint(n); dv=fa[, 1]; pl=#dv; ml=fa[, 2]; g=1; for(i=1, pl, ds=dv[i]; v=1; if(ds%4==1, v*=(1+ds)\2, v*=(1-ds)\2); for(k=1, ml[i], g*=v)); return(g);
(PARI) {
forstep(n=1, 120, 2,
fa=factorint(n); dv=fa[, 1]; pl=#dv; ml=fa[, 2];
g=1;
for(i=1, pl,
ds=dv[i]; v=1;
if(ds%4==1, v*=(1+ds)\2, v*=(1-ds)\2);
for(k=1, ml[i], g*=v)
);
print1(g", ")
);
}
(PARI) a(n) = {my(f = factor(2*n-1)); for (k=1, #f~, if (f[k, 1] == 2, f[k, 1] = 0, if (f[k, 1] % 4 == 1, f[k, 1] = (1+f[k, 1])/2, f[k, 1] = (1-f[k, 1])/2)); ); factorback(f); } \\ Michel Marcus, May 02 2016
CROSSREFS
Cf. A271974.
Sequence in context: A318319 A321785 A021755 * A164984 A248810 A339904
KEYWORD
sign,mult
AUTHOR
Dimitris Valianatos, Apr 24 2016
EXTENSIONS
Edited by Franklin T. Adams-Watters, Apr 24 2016 and by N. J. A. Sloane, May 27 2016
STATUS
approved