login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A272221
Number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 441", based on the 5-celled von Neumann neighborhood.
4
1, 4, 9, 36, 25, 96, 65, 192, 97, 284, 149, 436, 181, 580, 305, 812, 349, 1020, 381, 1340, 405, 1580, 561, 1932, 633, 2132, 881, 2512, 957, 2812, 1269, 3284, 1273, 3772, 1365, 4396, 1357, 4764, 1605, 5364, 1957, 5780, 2097, 6500, 2161, 6876, 2833, 7572, 2817
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=441; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
CROSSREFS
Sequence in context: A120073 A056894 A272145 * A334110 A117676 A085575
KEYWORD
nonn,easy
AUTHOR
Robert Price, Apr 22 2016
STATUS
approved