Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 Sep 08 2022 08:46:16
%S 25,1,41,145,313,545,841,1201,1625,2113,2665,3281,3961,4705,5513,6385,
%T 7321,8321,9385,10513,11705,12961,14281,15665,17113,18625,20201,21841,
%U 23545,25313,27145,29041,31001,33025,35113,37265,39481,41761,44105,46513,48985
%N a(n) = 32*n^2 - 56*n + 25.
%C Subsequence of A001844.
%H Vincenzo Librandi, <a href="/A272129/b272129.txt">Table of n, a(n) for n = 0..1000</a>
%H Richard P. Brent, <a href="http://arxiv.org/abs/1407.3533">Generalising Tuenter's binomial sums</a>, arXiv:1407.3533 [math.CO], 2014 (page 16).
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F O.g.f.: (25 - 74*x + 113*x^2)/(1-x)^3.
%F E.g.f.: (25 - 24*x + 32*x^2)*exp(x).
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
%F n*a(n) = 1 + 3^5*(n-1)/(n+1) + 5^5*((n-1)*(n-2))/((n+1)*(n+2)) + ... for n >= 1. See A245244. - _Peter Bala_, Jan 19 2019
%p [32*n^2-56*n+25$n=0..40]; # _Muniru A Asiru_, Jan 28 2019
%t Table[32 n^2 - 56 n + 25, {n, 0, 40}]
%t LinearRecurrence[{3,-3,1},{25,1,41},50] (* _Harvey P. Dale_, Jul 03 2018 *)
%o (Magma) [32*n^2 - 56*n + 25: n in [0..50]];
%o (PARI) lista(nn) = for(n=0, nn, print1(32*n^2-56*n+25, ", ")); \\ _Altug Alkan_, Apr 26 2016
%Y Cf. A001844, A272126, A272127, A272128, A272131, A272132, A272133, A245244.
%K nonn,easy
%O 0,1
%A _Vincenzo Librandi_, Apr 26 2016