Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Mar 16 2018 10:14:36
%S 1,4,96,384,92160,40960,61931520,49545216,16986931200,475634073600,
%T 125567395430400,7972533043200,3656522554933248000,195014536263106560,
%U 70205233054718361600,280820932218873446400,4582997613812014645248000,26453088680011628544000
%N Denominators of coefficients of the series of sqrt(-log(1-q)/q).
%C The function sqrt(-log(1-q)/q) is associated with the generating function of connected graphs enumeration
%H Vincenzo Librandi, <a href="/A272109/b272109.txt">Table of n, a(n) for n = 0..200</a>
%H P. Flajolet, B. Salvy, and G. Schaeffer, <a href="http://www.combinatorics.org/ojs/index.php/eljc/article/view/v11i1r34 ">Airy Phenomena and Analytic Combinatorics of Connected Graphs</a>, Electronic Journal of Combinatorics, Volume 11(1), 2004, Research Paper #R34 page 8.
%p gf := sqrt(-log(1-q)/q) ;
%p taylor(%,q=0,18) ;
%p gfun[seriestolist](%) ;
%p map(denom,%) ; # _R. J. Mathar_, Mar 15 2018
%t s = Sqrt[Log[1/(1 - q)]/q] + O[q]^20; CoefficientList[s, q] // Denominator
%o (PARI) Vec(apply(denominator,sqrt(-log(1-'q)/'q))) \\ _M. F. Hasler_, Mar 16 2018
%Y Cf. A272108 (numerators).
%K nonn,frac
%O 0,2
%A _Jean-François Alcover_, Apr 20 2016
%E Definition corrected by _Juan Arias-de-Reyna_, Mar 15 2018