Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 May 21 2024 05:30:36
%S 1,1,3,11,44,185,803,3564,16082,73502,339391,1580318,7410356,34956846,
%T 165756814,789543189,3775883483,18122280953,87257629998,421366007784,
%U 2040186607333,9902368905093,48170863713973,234819266573684,1146894750998644,5611743950271715,27504683191546135
%N G.f. A(x) satisfies: A(x) = A( x^5 + 5*x*A(x)^5 )^(1/5), with A(0)=0, A'(0)=1.
%C Compare the g.f. to the following identities:
%C (1) C(x) = C( x^2 + 2*x*C(x)^2 )^(1/2),
%C (2) C(x) = C( x^3 + 3*x*C(x)^3 )^(1/3),
%C where C(x) = x + C(x)^2 is a g.f. of the Catalan numbers (A000108).
%C More generally, for prime p there exists an integer series G(x) that satisfies: G(x) = G( x^p + p*x*G(x)^p )^(1/p) with G(0)=0, G'(0)=1 (conjecture).
%H Paul D. Hanna, <a href="/A271931/b271931.txt">Table of n, a(n) for n = 1..500</a>
%e G.f.: A(x) = x + x^2 + 3*x^3 + 11*x^4 + 44*x^5 + 185*x^6 + 803*x^7 + 3564*x^8 + 16082*x^9 + 73502*x^10 + 339391*x^11 + 1580318*x^12 + ...
%e where A(x)^5 = A( x^5 + 5*x*A(x)^5 ).
%e RELATED SERIES.
%e A(x)^5 = x^5 + 5*x^6 + 25*x^7 + 125*x^8 + 625*x^9 + 3126*x^10 + 15640*x^11 + 78275*x^12 + 391875*x^13 + 1962500*x^14 + 9831253*x^15 + 49265695*x^16 + ...
%e Let R(x) be the series reversion of g.f. A(x), R(A(x)) = x, then R(x) begins
%e R(x) = x - x^2 - x^3 - x^4 + 4*x^6 + 15*x^7 + 36*x^8 + 55*x^9 - 359*x^11 - 1520*x^12 - 4028*x^13 - 6667*x^14 + 49062*x^16 + 217645*x^17 + ...
%e The 4 quintisections of R(x) = Q1(x) + Q2(x) + Q3(x) + Q4(x) (with the fifth being zero) are as follows
%e Q1(x) = x + 4*x^6 - 359*x^11 + 49062*x^16 - 8013396*x^21 + 1442958557*x^26 - 276352605126*x^31 + 55224710824185*x^36 - 11384289478228711*x^41 + ...
%e Q2(x) = -x^2 + 15*x^7 - 1520*x^12 + 217645*x^17 - 36405005*x^22 + 6650838668*x^27 - 1286179025729*x^32 + 258819346825534*x^37 + ...
%e Q3(x) = -x^3 + 36*x^8 - 4028*x^13 + 600254*x^18 - 102567034*x^23 + 18988120493*x^28 - 3705388523045*x^33 + 750546817970646*x^38 + ...
%e Q4(x) = -x^4 + 55*x^9 - 6667*x^14 + 1028514*x^19 - 179152944*x^24 + 33573744984*x^29 - 6607215559460*x^34 + 1346634048063165*x^39 + ...
%e where Q1*Q4 = -Q2*Q3 where
%e Q2*Q3 = x^5 - 51*x^10 + 6088*x^15 - 933039*x^20 + 161933629*x^25 - 30277104991*x^30 + 5949003081867*x^35 - 1211076410858363*x^40 + ...
%o (PARI) {a(n) = my(A=x+x^2,X=x+x*O(x^n)); for(i=1,n, A = subst(A,x, x^5 + 5*X*A^5)^(1/5) ); polcoeff(A,n)}
%o for(n=1,40,print1(a(n),", "))
%Y Cf. A271932, A271933.
%K nonn
%O 1,3
%A _Paul D. Hanna_, Apr 16 2016