login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f. A(x) satisfies: A(x)^3 = A(x^3) / (1 - 3*x).
4

%I #15 Apr 18 2016 04:33:41

%S 1,1,2,5,12,31,83,224,615,1708,4777,13455,38110,108428,309714,887666,

%T 2551575,7353423,21240460,61478489,178269670,517784717,1506162369,

%U 4387201004,12795170784,37359689295,109199349181,319493390481,935616592227,2742209152877,8043500169958,23610710680582,69354125493930,203852682699869,599549063015417,1764338532368820

%N G.f. A(x) satisfies: A(x)^3 = A(x^3) / (1 - 3*x).

%C Compare g.f. to: G(x)^2 = G(x^2)/(1 - 2*x) where G(x) is the g.f. of A123916, the EULER transform of A000048.

%H Vaclav Kotesovec, <a href="/A271929/b271929.txt">Table of n, a(n) for n = 1..400</a>

%F The EULER transform of A046211, where A046211(n) is the number of ternary Lyndon words whose digits sum to 1 (or 2) mod 3.

%F a(n) ~ c * 3^n / n^(2/3), where c = 0.1260671867244258410294918... . - _Vaclav Kotesovec_, Apr 18 2016

%e G.f.: A(x) = x + x^2 + 2*x^3 + 5*x^4 + 12*x^5 + 31*x^6 + 83*x^7 + 224*x^8 + 615*x^9 + 1708*x^10 + 4777*x^11 + 13455*x^12 +...

%e where A(x)^3 = A(x^3) / (1 - 3*x).

%e Also, when expressed as the EULER transform of A046211,

%e A(x) = x/( (1-x) * (1-x^2) * (1-x^3)^3 * (1-x^4)^6 * (1-x^5)^16 * (1-x^6)^39 * (1-x^7)^104 * (1-x^8)^270 * (1-x^9)^729 *...* (1-x^n)^A046211(n) *...).

%e RELATED SERIES.

%e A(x)^3 = x^3 + 3*x^4 + 9*x^5 + 28*x^6 + 84*x^7 + 252*x^8 + 758*x^9 + 2274*x^10 + 6822*x^11 + 20471*x^12 + 61413*x^13 + 184239*x^14 +...

%o (PARI) {a(n) = my(A=x); for(i=1, n, A = ( subst(A, x, x^3)/(1 - 3*x +x*O(x^n)))^(1/3)); polcoeff(G=A, n)}

%o for(n=1, 50, print1(a(n), ", "))

%Y Cf. A123916.

%K nonn

%O 1,3

%A _Paul D. Hanna_, Apr 17 2016