login
A271921
Numerator of n*Product_{j=1..n-1} ((3*j + 1)/(3*j + 2)).
1
1, 8, 21, 28, 65, 624, 3458, 7904, 1710, 53200, 226765, 3534, 14911, 160580, 3699075, 3945680, 41084393, 1131029172, 85276009, 44882110, 185464461, 239133664, 4187556548, 61174739136, 62862555700, 709808057504, 3639472564077, 7548535688456, 90908444753, 752345749680, 17686394665394
OFFSET
1,2
LINKS
J. de Gier, Loops, matchings and alternating-sign matrices, arXiv:math.CO/0211285, 2002-2003.
EXAMPLE
1, 8/5, 21/10, 28/11, 65/22, 624/187, 3458/935, 7904/1955, 1710/391, 53200/ 11339, 226765/45356, 3534/667, 14911/2668, 160580/27347, 3699075/601634, ...
MAPLE
f:=proc(n) local j;
mul(((3*j+1)/(3*j+2)), j=1..n-1); end;
t2:=[seq(n*f(n), n=1..50)];
map(numer, t2);
map(denom, t2);
MATHEMATICA
Table[n*Product[(3*j+1)/(3*j+2), {j, 1, n-1}] // Numerator, {n, 1, 31}] (* Jean-François Alcover, Mar 25 2018 *)
PROG
(PARI) a(n) = numerator(n*prod(j=1, n-1, (3*j + 1)/(3*j + 2))); \\ Michel Marcus, Mar 25 2018
CROSSREFS
Cf. A271922 (denominators).
Sequences of fractions from de Gier paper: A271919, A271920, A271922, A271923, A271924, A271925, A271926.
Sequence in context: A123255 A053750 A321439 * A003249 A134862 A302253
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, May 04 2016
STATUS
approved