login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of ( 1-2*x+3*x^2 ) / ( 1-4*x+5*x^2-4*x^3 ).
2

%I #17 Dec 08 2020 19:02:08

%S 1,2,6,18,50,134,358,962,2594,6998,18870,50866,137106,369574,996230,

%T 2685474,7239042,19513718,52601558,141793810,382222322,1030326470,

%U 2777369510,7486734978,20181398242,54401396118,146645533174,395300745074,1065580898898,2872402002918,7742906497478,20871939570914

%N Expansion of ( 1-2*x+3*x^2 ) / ( 1-4*x+5*x^2-4*x^3 ).

%C Sum of all second elements at level n of the TRIP-Stern sequence corresponding to the permutation triple (e,e,e)

%C Number of permutations of length n>0 avoiding the partially ordered pattern (POP) {1>4, 3>2} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is larger than the last element, and the third element is larger than the second one. - _Sergey Kitaev_, Dec 08 2020

%H Harvey P. Dale, <a href="/A271897/b271897.txt">Table of n, a(n) for n = 0..1000</a>

%H Ilya Amburg, Krishna Dasaratha, Laure Flapan, Thomas Garrity, Chansoo Lee, Cornelia Mihaila, Nicholas Neumann-Chun, Sarah Peluse, Matthew Stoffregen, <a href="http://arxiv.org/abs/1509.05239">Stern Sequences for a Family of Multidimensional Continued Fractions: TRIP-Stern Sequences</a>, arXiv:1509.05239 [math.CO], 2015, Section 7.2.1.

%H Alice L. L. Gao, Sergey Kitaev, <a href="https://arxiv.org/abs/1903.08946">On partially ordered patterns of length 4 and 5 in permutations</a>, arXiv:1903.08946 [math.CO], 2019.

%H Alice L. L. Gao, Sergey Kitaev, <a href="https://doi.org/10.37236/8605">On partially ordered patterns of length 4 and 5 in permutations</a>, The Electronic Journal of Combinatorics 26(3) (2019), P3.26.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,-5,4).

%t CoefficientList[Series[(1-2x+3x^2)/(1-4x+5x^2-4x^3),{x,0,40}],x] (* or *) LinearRecurrence[{4,-5,4},{1,2,6},40] (* _Harvey P. Dale_, Dec 27 2016 *)

%o (PARI) x='x+O('x^99); Vec((1-2*x+3*x^2)/(1-4*x+5*x^2-4*x^3)) \\ _Altug Alkan_, Apr 16 2016

%Y Cf. A000930 (maximum at level n).

%K nonn,easy

%O 0,2

%A _R. J. Mathar_, Apr 16 2016