login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the doubly infinite sum N_3 = Sum_{i,j,k = -inf..inf} (-1)^(i+j+k)/(i^2+j^2+k^2), a lattice constant analog of Madelung's constant (negated).
0

%I #18 Apr 24 2016 19:51:39

%S 2,5,1,9,3,5,6,1,5,2,0,8,9,4,4,5,3,1,3,3,4,2,7,1,1,7,2,7,3,2,9,4,3,7,

%T 9,1,2,1,1,6,4,9,9,1,3,6,7,5,1,7,3,2,5,7,7,5,0,0,6,6,0,7,8,5,6,7,7,4,

%U 3,9,0,1,2,6,9,1,8,7,2,7,7,4,0,9,6,4,2,8,0,2,1,0,1,6,2,3,7,3,0,3,1

%N Decimal expansion of the doubly infinite sum N_3 = Sum_{i,j,k = -inf..inf} (-1)^(i+j+k)/(i^2+j^2+k^2), a lattice constant analog of Madelung's constant (negated).

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.10 Madelung's constant, p. 77.

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/MadelungConstants.html">Madelung Constants</a>

%F N_3 = Pi^2/3-Pi*log(2)-(Pi/sqrt(2))*log(2(sqrt(2)+1))+8 Pi*Sum_{m,n >= 1} (-1)^n csch(Pi*sqrt(m^2+2n^2))/sqrt(m^2+2n^2).

%e -2.51935615208944531334271172732943791211649913675173257750066...

%t digits = 101; Clear[s]; s[max_] := s[max] = NSum[(-1)^n Csch[Pi *Sqrt[m^2 + 2 n^2]]/Sqrt[m^2 + 2 n^2], {m, 1, max}, {n, 1, max}, Method -> "AlternatingSigns", WorkingPrecision -> digits + 10]; s[10]; s[max = 20]; Print[max]; While[RealDigits[s[max], 10, digits + 5][[1]] != RealDigits[s[max/2], 10, digits + 5][[1]], max = max*2; Print[max]]; N3 = Pi^2/3 - Pi*Log[2] - Pi/Sqrt[2] Log[2 (Sqrt[2] + 1)] + 8 Pi*s[max]; RealDigits[N3, 10, digits][[1]]

%Y Cf. A088537 (M_2), A085469 (M_3), A090734 (M_4), A086054 (N_2).

%K nonn,cons

%O 1,1

%A _Jean-François Alcover_, Apr 24 2016