login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(1) = 1, then a(n) is the maximum of all 0 < m < n for which a(m) divides n.
2

%I #11 Apr 15 2016 15:57:17

%S 1,1,2,3,2,5,2,7,4,7,2,11,2,13,6,13,2,17,2,19,10,19,2,23,6,23,4,27,2,

%T 29,2,31,12,31,10,33,2,37,16,37,2,41,2,43,6,43,2,47,10,49,18,47,2,53,

%U 12,53,22,53,2,59,2,61,10,61,16,61,2,67,26,67,2,71,2

%N a(1) = 1, then a(n) is the maximum of all 0 < m < n for which a(m) divides n.

%C If n is an odd prime, then a(n) = 2 and a(n+1) = n. All n for which a(n) = 2 are odd primes. - _Robert Israel_, Apr 14 2016

%H Robert Israel, <a href="/A271774/b271774.txt">Table of n, a(n) for n = 1..10000</a>

%e a(1) = 1 by definition.

%e a(2) = 1 because a(1) divides 2.

%e a(3) = 2 because a(2) divides 3.

%e a(4) = 3 because a(3) divides 4.

%e a(5) = 2 because a(2) divides 5.

%e a(6) = 5 because a(5) divides 6.

%e a(7) = 2 because a(2) divides 7.

%e a(8) = 7 because a(7) divides 8.

%p A:= proc(n) option remember; local m;

%p for m from n-1 by -1 do

%p if n mod A(m) = 0 then return m fi

%p od

%p end proc:

%p A(1):= 1:

%p seq(A(i),i=1..100); # _Robert Israel_, Apr 14 2016

%t a[1] = 1; a[n_] := a[n] = Block[{m = n - 1}, While[Mod[n, a[m]] > 0, m--]; m]; Array[a, 100] (* _Giovanni Resta_, Apr 14 2016 *)

%Y Cf. A088167, A269347, A271503, A271504, A271773.

%K nonn

%O 1,3

%A _Peter Kagey_, Apr 14 2016