login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A271772
Partial sums of the number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 406", based on the 5-celled von Neumann neighborhood.
1
1, 6, 14, 34, 54, 102, 139, 216, 261, 398, 482, 662, 782, 1050, 1186, 1502, 1635, 2044, 2269, 2794, 3062, 3706, 3982, 4714, 5058, 5942, 6362, 7290, 7775, 8892, 9388, 10576, 11132, 12592, 13237, 14870, 15594, 17386, 18186, 20098, 20942, 23106, 24074, 26402
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=406; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] (* Sum at each stage *)
CROSSREFS
Cf. A271885.
Sequence in context: A270170 A270986 A270323 * A270024 A271198 A270632
KEYWORD
nonn,easy
AUTHOR
Robert Price, Apr 16 2016
STATUS
approved