login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of set partitions of [n] with minimal block length multiplicity equal to nine.
2

%I #8 May 15 2018 06:41:57

%S 1,0,0,0,0,0,0,0,0,34459425,0,0,0,0,0,0,0,0,3139051466175625,

%T 452214824811750,7749317679728625,2980506799895625,284294494759275000,

%U 16245399700530000,12231973704514063500,75947243599977750,558368602431954063750,668351312267239068593125

%N Number of set partitions of [n] with minimal block length multiplicity equal to nine.

%H Alois P. Heinz, <a href="/A271769/b271769.txt">Table of n, a(n) for n = 9..578</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>

%F a(n) = A271424(n,9).

%p with(combinat):

%p b:= proc(n, i, k) option remember; `if`(n=0, 1,

%p `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)

%p *b(n-i*j, i-1, k)/j!, j={0, $k..n/i})))

%p end:

%p a:= n-> b(n$2, 9)-b(n$2, 10):

%p seq(a(n), n=9..40);

%t multinomial[n_, k_List] := n!/Times @@ (k!);

%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, Join[{0}, Range[k, n/i]]}]]];

%t a[n_] := b[n, n, 9] - b[n, n, 10];

%t Table[a[n], {n, 9, 40}] (* _Jean-François Alcover_, May 15 2018, after _Alois P. Heinz_ *)

%Y Column k=9 of A271424.

%K nonn

%O 9,10

%A _Alois P. Heinz_, Apr 13 2016