Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Mar 11 2021 04:47:13
%S 3,6,9,4,3,7,5,1,0,3,8,6,4,9,8,6,8,9,3,2,3,1,9,0,7,4,9,8,7,6,7,5,0,7,
%T 7,7,0,5,5,3,7,2,9,1,3,8,9,3,0,3,1,8,2,5,2,9,1,0,1,2,3,0,2,9,0,7,7,3,
%U 9,2,9,9,5,7,3,9,1,7,7,7,8,4,2,8,2,7,6,8,3,3,5,0,0,0,6,9,3,1,7
%N Decimal expansion of Hardy-Littlewood constant C_7 = Product_{p prime > 7} 1/(1-1/p)^7 (1-7/p).
%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.1 Hardy-Littlewood Constants, p. 86.
%e 0.3694375103864986893231907498767507770553729138930318252910123...
%t $MaxExtraPrecision = 1100; digits = 99; terms = 1000; P[n_] := PrimeZetaP[ n] - 1/2^n - 1/3^n - 1/5^n - 1/7^n; LR = Join[{0, 0}, LinearRecurrence[ {8, -7}, {-42, -336}, terms+10]]; r[n_Integer] := LR[[n]]; Exp[ NSum[ r[n]*P[n-1]/(n-1), {n, 3, terms}, NSumTerms -> terms, WorkingPrecision -> digits+10]] // RealDigits[#, 10, digits]& // First
%o (PARI) prodeulerrat(1/(1-1/p)^7*(1-7/p), 1, 11) \\ _Amiram Eldar_, Mar 11 2021
%Y Cf. A005597, A065418, A065419, A269843, A269846.
%K nonn,cons
%O 0,1
%A _Jean-François Alcover_, Apr 17 2016