login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of set partitions of [n] with maximal block length multiplicity equal to eight.
2

%I #8 May 08 2018 06:23:29

%S 1,0,45,165,1980,14157,123123,1042470,11229075,117721175,1085614101,

%T 11354532696,132028149240,1440550986525,15693895739115,

%U 183700174158435,2200557929261230,26295830857171150,323510486572841425,4085513198322259275,52716487743732737925

%N Number of set partitions of [n] with maximal block length multiplicity equal to eight.

%C At least one block length occurs exactly 8 times, and all block lengths occur at most 8 times.

%H Alois P. Heinz, <a href="/A271737/b271737.txt">Table of n, a(n) for n = 8..588</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>

%p with(combinat):

%p b:= proc(n, i, k) option remember; `if`(n=0, 1,

%p `if`(i<1, 0, add(multinomial(n, n-i*j, i$j)

%p *b(n-i*j, i-1, k)/j!, j=0..min(k, n/i))))

%p end:

%p a:= n-> b(n$2, 8)-b(n$2, 7):

%p seq(a(n), n=8..30);

%t multinomial[n_, k_List] := n!/Times @@ (k!);

%t b[n_, i_, k_] := b[n, i, k] = If[n == 0, 1, If[i < 1, 0, Sum[multinomial[n, Join[{n - i*j}, Table[i, j]]]*b[n - i*j, i - 1, k]/j!, {j, 0, Min[k, n/i] }]]];

%t a[n_] := b[n, n, 8] - b[n, n, 7];

%t Table[a[n], {n, 8, 30}] (* _Jean-François Alcover_, May 08 2018, after _Alois P. Heinz_ *)

%Y Column k=8 of A271423.

%K nonn

%O 8,3

%A _Alois P. Heinz_, Apr 13 2016