login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271723
Numbers k such that 3*k - 8 is a square.
2
3, 4, 8, 11, 19, 24, 36, 43, 59, 68, 88, 99, 123, 136, 164, 179, 211, 228, 264, 283, 323, 344, 388, 411, 459, 484, 536, 563, 619, 648, 708, 739, 803, 836, 904, 939, 1011, 1048, 1124, 1163, 1243, 1284, 1368, 1411, 1499, 1544, 1636, 1683, 1779, 1828, 1928, 1979, 2083, 2136, 2244, 2299
OFFSET
1,1
COMMENTS
Square roots of resulting squares gives A001651. - Ray Chandler, Apr 14 2016
FORMULA
From Ilya Gutkovskiy, Apr 13 2016: (Start)
G.f.: x*(3 + x - 2*x^2 + x^3 + 3*x^4)/((1 - x)^3*(1 + x)^2).
a(n) = (6*(n - 1)*n - (2*n - 1)*(-1)^n + 23)/8. (End)
EXAMPLE
a(1) = 3 because 3*3 - 8 = 1^2.
MAPLE
seq(seq(((3*m+k)^2+8)/3, k=1..2), m=0..50); # Robert Israel, Dec 05 2016
MATHEMATICA
Select[Range@ 2400, IntegerQ@ Sqrt[3 # - 8] &] (* Bruno Berselli, Apr 14 2016 *)
LinearRecurrence[{1, 2, -2, -1, 1}, {3, 4, 8, 11, 19}, 60] (* Harvey P. Dale, Oct 02 2020 *)
PROG
(Magma) [n: n in [1..2400] | IsSquare(3*n-8)];
(Python) from gmpy2 import is_square
[n for n in range(3000) if is_square(3*n-8)] # Bruno Berselli, Dec 05 2016
(Python) [(6*(n-1)*n-(2*n-1)*(-1)**n+23)/8 for n in range(1, 60)] # Bruno Berselli, Dec 05 2016
CROSSREFS
Cf. A001651.
Cf. numbers n such that 3*n + k is a square: this sequence (k=-8), A120328 (k=-6), A271713 (k=-5), A056107 (k=-3), A257083 (k=-2), A033428 (k=0), A001082 (k=1), A080663 (k=3), A271675 (k=4), A100536 (k=6), A271741 (k=7), A067725 (k=9).
Sequence in context: A183151 A288566 A084421 * A212545 A357878 A358910
KEYWORD
nonn,easy
AUTHOR
STATUS
approved