The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A271723 Numbers k such that 3*k - 8 is a square. 1
 3, 4, 8, 11, 19, 24, 36, 43, 59, 68, 88, 99, 123, 136, 164, 179, 211, 228, 264, 283, 323, 344, 388, 411, 459, 484, 536, 563, 619, 648, 708, 739, 803, 836, 904, 939, 1011, 1048, 1124, 1163, 1243, 1284, 1368, 1411, 1499, 1544, 1636, 1683, 1779, 1828, 1928, 1979, 2083, 2136, 2244, 2299 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Square roots of resulting squares gives A001651. - Ray Chandler, Apr 14 2016 LINKS Robert Israel, Table of n, a(n) for n = 1..10000 Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1). FORMULA From Ilya Gutkovskiy, Apr 13 2016: (Start) G.f.: x*(3 + x - 2*x^2 + x^3 + 3*x^4)/((1 - x)^3*(1 + x)^2). a(n) = (6*(n - 1)*n - (2*n - 1)*(-1)^n + 23)/8. (End) EXAMPLE a(1) = 3 because 3*3 - 8 = 1^2. MAPLE seq(seq(((3*m+k)^2+8)/3, k=1..2), m=0..50); # Robert Israel, Dec 05 2016 MATHEMATICA Select[Range@ 2400, IntegerQ@ Sqrt[3 # - 8] &] (* Bruno Berselli, Apr 14 2016 *) PROG (MAGMA) [n: n in [1..2400] | IsSquare(3*n-8)]; (Python) from gmpy2 import is_square [n for n in range(3000) if is_square(3*n-8)] # Bruno Berselli, Dec 05 2016 (Python) [(6*(n-1)*n-(2*n-1)*(-1)**n+23)/8 for n in range(1, 60)] # Bruno Berselli, Dec 05 2016 CROSSREFS Cf. A001651. Cf. numbers n such that 3*n + k is a square: this sequence (k=-8), A120328 (k=-6), A271713 (k=-5), A056107 (k=-3), A257083 (k=-2), A033428 (k=0), A001082 (k=1), A080663 (k=3), A271675 (k=4), A100536 (k=6), A271741 (k=7), A067725 (k=9). Sequence in context: A183151 A288566 A084421 * A212545 A212546 A212547 Adjacent sequences:  A271720 A271721 A271722 * A271724 A271725 A271726 KEYWORD nonn,easy AUTHOR Juri-Stepan Gerasimov, Apr 13 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 27 21:52 EDT 2020. Contains 334671 sequences. (Running on oeis4.)