login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271670 Number of n-step excursions on the 7-dimensional f.c.c. lattice. 11
1, 0, 84, 1680, 66276, 2731680, 128704800, 6555265920, 355588928100, 20247799145280, 1198746727590384, 73266532153214400, 4598338364703822816, 295145004688715301120, 19311431876483926443264 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n) = number of walks in the integer lattice Z^7 starting and ending at the origin, using only the steps of the form (s_1, ..., s_7) with s_1^2 + ... + s_7^2 = 2, i.e., each possible step has precisely two nonzero entries which can be +1 or -1.

LINKS

Christoph Koutschan, Table of n, a(n) for n = 0..524

C. Koutschan, Computations for higher-dimensional fcc lattices.

C. Koutschan, Differential operator annihilating the generating function.

C. Koutschan, Recurrence equation.

N. Zenine, S. Hassani, J-M. Maillard, Lattice Green Functions: the seven-dimensional face-centred cubic lattice, arXiv:1409.8615 [math-ph], 2014.

N. Zenine, S. Hassani, J-M. Maillard, Lattice Green Functions: the seven-dimensional face-centred cubic lattice, Journal of Physics A: Mathematical and Theoretical 48 (2015), 035205.

FORMULA

a(n) conjecturally satisfies a linear recurrence equation of order 15 with polynomial coefficients of degree 56 (see link above).

The probability generating function P(z) = Sum_{n>=0} a(n)*(z/84)^n is given by the 7-fold integral (1/Pi)^7 Int_{0..Pi} ... Int_{0..Pi} 1/(1-z*lambda_7) dk_1 ... dk_7, where the structure function is defined as lambda_7 = (1/binomial(7,2)) Sum_{i=1..7} Sum_{j=(i+1)..7} cos(k_i)*cos(k_j). The function P(z) conjecturally satisfies an eleventh-order linear ODE with polynomial coefficients of degree 68 (see link above).

EXAMPLE

There is one walk with no steps.

No walk with a single steps returns to the origin.

The number of returning walks with two steps is exactly the number of allowed steps (called the coordination number of the lattice): a(2) = 4*binomial(7,2).

MAPLE

nmax := 50: tt := [seq([seq(add(binomial(2*p, p)*binomial(2*j, 2*p-n)*binomial(2*n+2*j-2*p, n+j-p), p = floor((n+1)/2)..floor((n+2*j)/2)), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: for d1 from 3 to 7 do tt := [seq([seq(add(binomial(n, p)*add(binomial(2*j, 2*q-p)*binomial(2*j+2*p-2*q, j+p-q)*tt[n-p+1, q+1], q = floor((p+1)/2)..floor((p+2*j)/2)), p = 0..n), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: od: [seq(tt[n+1, 1], n = 0..nmax)];

MATHEMATICA

nmax = 50; T = Table[Sum[Binomial[2 p, p]*Binomial[2 j, 2 p - n]*Binomial[2 n + 2 j - 2 p, n + j - p], {p, Floor[(n + 1)/2], Floor[(n + 2 j)/2]}], {n, 0, nmax}, {j, 0, Floor[(nmax - n)/2]}]; Do[T = Table[Sum[Binomial[n, p]*Sum[Binomial[2 j, 2 q - p]*Binomial[2 j + 2 p - 2 q, j + p - q]*T[[n - p + 1, q + 1]], {q, Floor[(p + 1)/2], Floor[(p + 2 j)/2]}], {p, 0, n}], {n, 0, nmax}, {j, 0, If[d1 < 7, Floor[(nmax - n)/2], 0]}], {d1, 3, 7}]; First /@ T

CROSSREFS

Cf. A002899 (d = 3, i.e., excursions on the 3-dimensional f.c.c. lattice), A271432 (d = 4), A271650 (d = 5), A271651 (d = 6), this sequence (d = 7), A271671 (d = 8), A271672 (d = 9), A271673 (d = 10), A271674 (d = 11).

Sequence in context: A008359 A166847 A219938 * A098935 A297486 A104674

Adjacent sequences:  A271667 A271668 A271669 * A271671 A271672 A271673

KEYWORD

nonn,walk

AUTHOR

Christoph Koutschan, Apr 12 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 1 16:10 EDT 2022. Contains 354973 sequences. (Running on oeis4.)