login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of n-step excursions on the 5-dimensional f.c.c. lattice.
11

%I #17 Apr 06 2024 09:02:18

%S 1,0,40,480,11880,281280,7506400,210268800,6166993000,187069411200,

%T 5833030976640,186014056166400,6044435339896800,199561060892793600,

%U 6679216425794140800,226213441773789550080,7741313040820500484200

%N Number of n-step excursions on the 5-dimensional f.c.c. lattice.

%C a(n) = number of walks in the integer lattice Z^5 starting and ending at the origin, using only the steps of the form (s_1, ..., s_5) with s_1^2 + ... + s_5^2 = 2, i.e., each possible step has precisely two nonzero entries which can be +1 or -1.

%H Christoph Koutschan, <a href="/A271650/b271650.txt">Table of n, a(n) for n = 0..629</a>

%H D. Broadhurst, <a href="http://carmamaths.org/resources/jon/Preprints/Papers/Submitted Papers/4step-walks/walk-broadhurst.pdf">Bessel moments, random walks and Calabi-Yau equations</a>.

%H A. J. Guttmann, <a href="http://dx.doi.org/10.1088/1751-8113/43/30/305205">Lattice Green's functions in all dimensions</a>, J. Phys. A.: Math. Theor. 43 (2010) 305205

%H C. Koutschan, <a href="http://www.koutschan.de/data/fcc/">Computations for higher-dimensional fcc lattices</a>.

%H C. Koutschan, <a href="http://www.koutschan.de/data/fcc1/fcc5_mop.txt">Differential operator annihilating the generating function</a>.

%H C. Koutschan, <a href="http://www.koutschan.de/data/fcc1/fcc5_rec.txt">Recurrence equation</a>.

%H C. Koutschan, <a href="http://arxiv.org/abs/1108.2164">Lattice Green's Functions of the Higher-Dimensional Face-Centered Cubic Lattices</a>, arXiv:1108.2164 [math.CO], 2011-2013.

%H C. Koutschan, <a href="http://dx.doi.org/10.1088/1751-8113/46/12/125005">Lattice Green's functions of the higher-dimensional face-centered cubic lattices</a>, Journal of Physics A: Mathematical and Theoretical 46(12) (2013), 125005.

%F a(n) satisfies a seventh-order linear recurrence equation with polynomial coefficients of degree 12 (see link above).

%F The probability generating function P(z) = Sum_{n>=0} a(n)*(z/40)^n is given by the 5-fold integral (1/Pi)^5 Int_{0..Pi} ... Int_{0..Pi} 1/(1-z*lambda_5) dk_1 ... dk_5, where the structure function is defined as lambda_5 = (1/binomial(5,2)) Sum_{i=1..5} Sum_{j=(i+1)..5} cos(k_i)*cos(k_j). The function P(z) satisfies a sixth-order linear ODE with polynomial coefficients of degree 17 (see link above).

%e There is one walk with no steps.

%e No walk with a single steps returns to the origin.

%e The number of returning walks with two steps is exactly the number of allowed steps (called the coordination number of the lattice): a(2) = 4*binomial(5,2).

%p nmax := 50: tt := [seq([seq(add(binomial(2*p,p)*binomial(2*j,2*p-n)*binomial(2*n+2*j-2*p,n+j-p), p = floor((n+1)/2)..floor((n+2*j)/2)), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: for d1 from 3 to 5 do tt := [seq([seq(add(binomial(n,p)*add(binomial(2*j,2*q-p)*binomial(2*j+2*p-2*q,j+p-q)*tt[n-p+1,q+1], q = floor((p+1)/2)..floor((p+2*j)/2)), p = 0..n), j = 0..floor((nmax-n)/2))], n = 0..nmax)]: od: [seq(tt[n+1,1], n = 0..nmax)];

%t nmax = 50; T = Table[Sum[Binomial[2 p, p]*Binomial[2 j, 2 p - n]*Binomial[2 n + 2 j - 2 p, n + j - p], {p, Floor[(n + 1)/2], Floor[(n + 2 j)/2]}], {n, 0, nmax}, {j, 0, Floor[(nmax - n)/2]}]; Do[T = Table[Sum[Binomial[n, p]*Sum[Binomial[2 j, 2 q - p]*Binomial[2 j + 2 p - 2 q, j + p - q]*T[[n - p + 1, q + 1]], {q, Floor[(p + 1)/2], Floor[(p + 2 j)/2]}], {p, 0, n}], {n, 0, nmax}, {j, 0, If[d1 < 5, Floor[(nmax - n)/2], 0]}], {d1, 3, 5}]; First /@ T

%Y Cf. A002899 (d = 3, i.e., excursions on the 3-dimensional f.c.c. lattice), A271432 (d = 4), this sequence (d = 5), A271651 (d = 6), A271670 (d = 7), A271671 (d = 8), A271672 (d = 9), A271673 (d = 10), A271674 (d = 11).

%K nonn,walk

%O 0,3

%A _Christoph Koutschan_, Apr 11 2016