Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #59 Nov 27 2024 15:50:05
%S 4,8,16,28,44,64,88,116,148,184,224,268,316,368,424,484,548,616,688,
%T 764,844,928,1016,1108,1204,1304,1408,1516,1628,1744,1864,1988,2116,
%U 2248,2384,2524,2668,2816,2968,3124,3284,3448,3616,3788,3964,4144,4328,4516,4708,4904,5104,5308,5516
%N a(n) = 2*(n^2 - n + 2).
%C Numbers n such that 2*n - 7 is a perfect square.
%C Galois numbers for three-dimensional vector space, defined as the total number of subspaces in a three-dimensional vector space over GF(n-1), when n-1 is a power of a prime. - _Artur Jasinski_, Aug 31 2016, corrected by _Robert Israel_, Sep 23 2016
%H Vincenzo Librandi, <a href="/A271649/b271649.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).
%F a(n) = 4*A000124(n).
%F a(n) = 2*A014206(n).
%F a(n) = A137882(n), n > 1. - _R. J. Mathar_, Apr 12 2016
%F Sum_{n>=1} 1/a(n) = tanh(sqrt(7)*Pi/2)*Pi/(2*sqrt(7)). - _Amiram Eldar_, Jul 30 2024
%F From _Elmo R. Oliveira_, Nov 18 2024: (Start)
%F G.f.: 4*x*(1 - x + x^2)/(1 - x)^3.
%F E.g.f.: 2*(exp(x)*(x^2 + 2) - 2).
%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)
%e a(1) = 2*(1^2 - 1 + 2) = 4.
%p A271649:=n->2*(n^2-n+2): seq(A271649(n), n=1..60); # _Wesley Ivan Hurt_, Aug 31 2016
%t Table[2 (n^2 - n + 2), {n, 53}] (* or *)
%t Select[Range@ 5516, IntegerQ@ Sqrt[2 # - 7] &] (* or *)
%t Table[SeriesCoefficient[(-4 (1 - x + x^2))/(-1 + x)^3, {x, 0, n}], {n, 0, 52}] (* _Michael De Vlieger_, Apr 11 2016 *)
%t LinearRecurrence[{3,-3,1},{4,8,16},60] (* _Harvey P. Dale_, Jun 14 2022 *)
%o (Magma) [ 2*n^2 - 2*n + 4: n in [1..60]];
%o (Magma) [ n: n in [1..6000] | IsSquare(2*n-7)];
%o (PARI) a(n)=2*(n^2-n+2) \\ _Charles R Greathouse IV_, Jun 17 2017
%Y Cf. A000124, A014206, A137882.
%Y Numbers h such that 2*h + k is a perfect square: no sequence (k=-9), A255843 (k=-8), this sequence (k=-7), A093328 (k=-6), A097080 (k=-5), A271624 (k=-4), A051890 (k=-3), A058331 (k=-2), A001844 (k=-1), A001105 (k=0), A046092 (k=1), A056222 (k=2), A142463 (k=3), A054000 (k=4), A090288 (k=5), A268581 (k=6), A059993 (k=7), (-1)*A147973 (k=8), A139570 (k=9), A271625 (k=10), A222182 (k=11), A152811 (k=12), A181510 (k=13), A161532 (k=14), no sequence (k=15).
%K nonn,easy
%O 1,1
%A _Juri-Stepan Gerasimov_, Apr 11 2016