login
Numbers n such that Bernoulli number B_{n} has denominator 510.
27

%I #25 Apr 29 2016 21:27:02

%S 16,32,64,128,304,496,608,752,944,992,1504,1648,1744,1984,2512,2672,

%T 3008,3152,3296,3376,3488,3568,3632,3664,3856,3968,4112,4208,4528,

%U 4976,5024,5072,5344,5584,5648,5776,5872,6016,6064,6128,6224,6304,6592,6752,7024,7136,7264

%N Numbers n such that Bernoulli number B_{n} has denominator 510.

%C 510 = 2 * 3 * 5 * 17.

%C All terms are multiple of a(1) = 16.

%C For these numbers numerator(B_{n}) mod denominator(B_{n}) = 463.

%H Seiichi Manyama, <a href="/A271634/b271634.txt">Table of n, a(n) for n = 1..1000</a>

%e Bernoulli B_{16} is -3617/510, hence 16 is in the sequence.

%p with(numtheory): P:=proc(q,h) local n; for n from 2 by 2 to q do

%p if denom(bernoulli(n))=h then print(n); fi; od; end: P(10^6,510);

%t Select[Range[0, 1000], Denominator[BernoulliB[#]] == 510 &] (* _Robert Price_, Apr 21 2016 *)

%o (PARI) isok(n) = denominator(bernfrac(n)) == 510; \\ _Michel Marcus_, Apr 22 2016

%Y Cf. A045979, A051222, A051225, A051226, A051227, A051228, A051229, A051230, A119456, A119480, A249134, A255684, A271635, A272138, A272139, A272140, A272183, A272184, A272185, A272186.

%K nonn,easy

%O 1,1

%A _Paolo P. Lava_, Apr 21 2016

%E More terms from _Michel Marcus_, Apr 22 2016