login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2*n^2 + 4*n - 3.
5

%I #35 Nov 18 2024 22:31:15

%S 3,13,27,45,67,93,123,157,195,237,283,333,387,445,507,573,643,717,795,

%T 877,963,1053,1147,1245,1347,1453,1563,1677,1795,1917,2043,2173,2307,

%U 2445,2587,2733,2883,3037,3195,3357,3523,3693,3867,4045,4227,4413,4603,4797,4995,5197,5403,5613,5827

%N a(n) = 2*n^2 + 4*n - 3.

%C Numbers n such that 2*n + 10 is a perfect square.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1).

%F G.f.: x*(3 + 4*x - 3*x^2)/(1 - x)^3. - _Ilya Gutkovskiy_, Apr 11 2016

%F Sum_{n>=1} 1/a(n) = 13/30 - Pi*cot(sqrt(5/2)*Pi)/(2*sqrt(10)) = 0.5627678459924... . - _Vaclav Kotesovec_, Apr 11 2016

%F From _Elmo R. Oliveira_, Nov 17 2024: (Start)

%F E.g.f.: exp(x)*(2*x^2 + 6*x - 3) + 3.

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3. (End)

%e a(1) = 2*1^2 + 4*1 - 3 = 3.

%t Table[2 n^2 + 4 n - 3, {n, 53}] (* _Michael De Vlieger_, Apr 11 2016 *)

%t LinearRecurrence[{3,-3,1},{3,13,27},60] (* _Harvey P. Dale_, Jun 08 2023 *)

%o (Magma) [ 2*n^2 + 4*n - 3: n in [1..60]];

%o (Magma) [ n: n in [1..6000] | IsSquare(2*n+10)];

%o (PARI) x='x+O('x^99); Vec(x*(3+4*x-3*x^2)/(1-x)^3) \\ _Altug Alkan_, Apr 11 2016

%Y Cf. A201713.

%Y Numbers h such that 2*h + k is a perfect square: A294774 (k=-9), A255843 (k=-8), A271649 (k=-7), A093328 (k=-6), A097080 (k=-5), A271624 (k=-4), A051890 (k=-3), A058331 (k=-2), A001844 (k=-1), A001105 (k=0), A046092 (k=1), A056222 (k=2), A142463 (k=3), A054000 (k=4), A090288 (k=5), A268581 (k=6), A059993 (k=7), (-1)*A147973 (k=8), A139570 (k=9), this sequence (k=10), A222182 (k=11), A152811 (k=12), A181510 (k=13), A161532 (k=14), no sequence (k=15).

%K nonn,easy

%O 1,1

%A _Juri-Stepan Gerasimov_, Apr 11 2016