login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the real part of the derivative of the Dirichlet function eta(z), at z=i, the imaginary unit.
5

%I #20 Jan 06 2024 16:33:23

%S 2,3,5,9,2,0,9,4,8,0,5,0,4,4,0,9,2,3,6,3,4,0,7,9,2,6,7,6,0,3,0,5,8,4,

%T 3,4,7,6,0,4,1,9,5,7,3,5,8,9,5,9,1,5,1,2,9,4,8,3,0,4,6,6,0,0,4,5,9,5,

%U 9,5,9,8,4,0,8,0,3,1,6,2,6,5,2,4,3,4,5,7,3,8,7,0,1,0,6,7,3,6,2,1,6,0,3,7,5

%N Decimal expansion of the real part of the derivative of the Dirichlet function eta(z), at z=i, the imaginary unit.

%C The corresponding imaginary part of eta'(i) is in A271526.

%H Stanislav Sykora, <a href="/A271525/b271525.txt">Table of n, a(n) for n = 0..2000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DirichletEtaFunction.html">Dirichlet Eta Function</a>

%F Equals real(eta'(i)).

%e 0.235920948050440923634079267603058434760419573589591512948304660...

%t RealDigits[Re[2^(1-I)*Log[2]*Zeta[I] + (1 - 2^(1-I))*Zeta'[I]], 10, 120][[1]] (* _Vaclav Kotesovec_, Apr 10 2016 *)

%t RealDigits[Re[DirichletEta'[I]], 10, 110][[1]] (* _Eric W. Weisstein_, Jan 06 2024 *)

%o (PARI) \\ Derivative of Dirichlet eta function (fails for z=1):

%o derdireta(z)=2^(1-z)*log(2)*zeta(z)+(1-2^(1-z))*zeta'(z);

%o real(derdireta(I)) \\ Evaluation

%Y Cf. A271523 (real(eta(i))), A271524 (imag(eta(i))), A271526(-imag(eta'(i))).

%K nonn,cons

%O 0,1

%A _Stanislav Sykora_, Apr 09 2016