Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Sep 08 2022 08:46:16
%S 10,20,56,120,364,560,1140,1540,2600,4960,5984,9880,13244,15180,19600,
%T 27720,37820,41664,54740,64824,70300,88560,102340,125580,161700,
%U 182104,192920,215820,227920,253460,357760,392084,447580,467180,573800,596904,669920,748660
%N a(n) = (p+1)*(p+2)*(p+3)/6 where p is the n-th prime.
%C Subsequence of A000292.
%H Vincenzo Librandi, <a href="/A271512/b271512.txt">Table of n, a(n) for n = 1..1000</a>
%F a(n) = A000292(A000040(n)+1). - _Michel Marcus_, Apr 10 2016
%p A271512:=n->(ithprime(n)+1)*(ithprime(n)+2)*(ithprime(n)+3)/6: seq(A271512(n), n=1..80); # _Wesley Ivan Hurt_, Apr 10 2016
%t Table[(Prime[n]^3 + 6 Prime[n]^2 + 11 Prime[n] + 6) / 6, {n, 50}]
%o (Magma) [(p+1)*(p+2)*(p+3) / 6: p in PrimesUpTo(200)];
%o (Python)
%o from sympy import prime
%o for n in range(1,1000):
%o p=prime(n)
%o print((int)(((p+1)*(p+2)*(p+3))/6))
%o # _Soumil Mandal_, Apr 11 2016
%o (PARI) lista(nn) = forprime(p=2, nn, print1((p+1)*(p+2)*(p+3)/6, ", ")); \\ _Altug Alkan_, Apr 10 2016
%Y Cf. A000040, A000292, A271511.
%K nonn,easy
%O 1,1
%A _Vincenzo Librandi_, Apr 10 2016