login
a(n) = 3^n mod 83.
3

%I #18 Sep 08 2022 08:46:16

%S 1,3,9,27,81,77,65,29,4,12,36,25,75,59,11,33,16,48,61,17,51,70,44,49,

%T 64,26,78,68,38,31,10,30,7,21,63,23,69,41,40,37,28,1,3,9,27,81,77,65,

%U 29,4,12,36,25,75,59,11,33,16,48,61,17,51,70,44,49,64,26

%N a(n) = 3^n mod 83.

%H Vincenzo Librandi, <a href="/A271350/b271350.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_41">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).

%F a(n) = a(n-41).

%t PowerMod[3, Range[0, 100], 83]

%o (Magma) [Modexp(3, n, 83): n in [0..100]];

%o (PARI) a(n) = lift(Mod(3, 83)^n); \\ _Altug Alkan_, Apr 05 2016

%Y Cf. similar sequences of the type 3^n mod p, where p is a prime: A070352 (5), A033940 (7), A070341 (11), A168399 (13), A036119 (17), A070342 (19), A070356 (23), A070344 (29), A036123 (31), A070346 (37), A070361 (41), A036126 (43), A070364 (47), A036134 (79), this sequence (83), A036136 (89), A036142 (113), A036143 (127), A271351 (131), A036145 (137), A036158 (199), A271352 (211), A036160 (223).

%K nonn,easy

%O 0,2

%A _Vincenzo Librandi_, Apr 05 2016