Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #17 Apr 04 2016 23:22:09
%S 1,2,3,4,5,7,8,9,10,14,16,20
%N Fibonacci(n) divides the n-th primorial.
%C Integers n such that A000045(n) divides A002110(n).
%C Inspired by A019532.
%e 5 is a term because fibonacci(5) = 5 divides 2*3*5*7*11 = 2310.
%t Select[Range@ 20, Divisible[Product[Prime@ k, {k, #}], Fibonacci@ #] &] (* _Michael De Vlieger_, Apr 04 2016 *)
%o (PARI) for(n=1, 1e4, my(f = fibonacci(n)); if (lift(prod(i=1, n, Mod(prime(i), f))) == 0, print1(n, ", ")));
%Y Cf. A000045, A002110, A019532, A271168.
%K nonn,fini,full
%O 1,2
%A _Altug Alkan_, Apr 03 2016