login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271310 Decimal expansion of the leftmost root of Im(W(z)/log(z)) = Re(W(z)/log(z)) (negated), where W(z) denotes the Lambert W function. 1
4, 2, 1, 3, 1, 5, 0, 6, 8, 4, 8, 4, 4, 9, 0, 4, 8, 9, 8, 4, 6, 0, 6, 8, 9, 1, 9, 6, 4, 5, 6, 0, 1, 5, 8, 3, 9, 7, 4, 9, 4, 4, 4, 9, 0, 1, 7, 6, 6, 0, 8, 0, 2, 3, 2, 4, 7, 0, 4, 2, 2, 7, 4, 9, 6, 8, 9, 2, 0, 2, 4, 2, 1, 3, 2, 5, 2, 1, 7, 4, 3, 3, 9, 2, 3, 3, 9, 4, 4, 3, 6, 1, 8, 0, 0, 0, 9, 8, 2, 4, 0, 4, 8, 1, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..10000

Eric Weisstein's World of Mathematics, Lambert W-Function

Wikipedia, Lambert W function

EXAMPLE

-0.42131506848449048984606891964560158397494449...

MAPLE

f:= z-> Re(LambertW(-z)/ln(-z))-Im(LambertW(-z)/ln(-z)):

Digits:= 200:

fsolve(f(x), x=0.4..1.0);  # Alois P. Heinz, May 04 2016

MATHEMATICA

FindRoot[Im[ProductLog[z]/Log[z]] - Re[ProductLog[z]/Log[z]] == 0, {z, -0.42241, -0.416207}, WorkingPrecision ->100 ]

CROSSREFS

Sequence in context: A097525 A309975 A010124 * A071406 A337063 A010311

Adjacent sequences:  A271307 A271308 A271309 * A271311 A271312 A271313

KEYWORD

nonn,cons

AUTHOR

Eli Jaffe, Mar 27 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 15 12:37 EDT 2021. Contains 343920 sequences. (Running on oeis4.)