Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Jul 26 2024 21:16:38
%S 1,4,40,200,872,3624,14760,59560,239272,959144,3840680,15370920,
%T 61500072,246033064,984197800,3936922280
%N Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 337", based on the 5-celled von Neumann neighborhood.
%C Initialized with a single black (ON) cell at stage zero.
%C It is conjectured that Rule 505 also produces this sequence. It would be nice to have a proof.
%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>
%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>
%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>
%H <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>
%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>
%F Conjectures from _Colin Barker_, May 04 2016: (Start)
%F a(n) = (11*4^n)/3-8/3-2^(2+n) for n>0.
%F a(n) = 7*a(n-1)-14*a(n-2)+8*a(n-3) for n>3.
%F G.f.: (1-3*x+26*x^2-32*x^3) / ((1-x)*(1-2*x)*(1-4*x)).
%F (End)
%t CAStep[rule_,a_]:=Map[rule[[10-#]]&,ListConvolve[{{0,2,0},{2,1,2},{0,2,0}},a,2],{2}];
%t code=337; stages=128;
%t rule=IntegerDigits[code,2,10];
%t g=2*stages+1; (* Maximum size of grid *)
%t a=PadLeft[{{1}},{g,g},0,Floor[{g,g}/2]]; (* Initial ON cell on grid *)
%t ca=a;
%t ca=Table[ca=CAStep[rule,ca],{n,1,stages+1}];
%t PrependTo[ca,a];
%t (* Trim full grid to reflect growth by one cell at each stage *)
%t k=(Length[ca[[1]]]+1)/2;
%t ca=Table[Table[Part[ca[[n]][[j]],Range[k+1-n,k-1+n]],{j,k+1-n,k-1+n}],{n,1,k}];
%t on=Map[Function[Apply[Plus,Flatten[#1]]],ca] (* Count ON cells at each stage *)
%t Part[on,2^Range[0,Log[2,stages]]] (* Extract relevant terms *)
%Y Cf. A271285.
%K nonn,more
%O 0,2
%A _Robert Price_, Apr 03 2016
%E a(8)-a(15) from _Lars Blomberg_, Jun 15 2016