

A271284


First differences of number of active (ON,black) cells in nth stage of growth of twodimensional cellular automaton defined by "Rule 334", based on the 5celled von Neumann neighborhood.


1



4, 3, 13, 1, 12, 12, 25, 9, 44, 32, 32, 17, 39, 21, 4, 55, 17, 39, 40, 61, 59, 32, 76, 24, 0, 144, 92, 116, 165, 57, 188, 72, 28, 209, 257, 164, 0, 152, 16, 48, 137, 59, 16, 36, 240, 201, 165, 380, 264, 544, 607, 395, 109, 0, 39, 433, 45, 260
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Initialized with a single black (ON) cell at stage zero.


REFERENCES

S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.


LINKS

Robert Price, Table of n, a(n) for n = 0..127
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
S. Wolfram, A New Kind of Science
Index entries for sequences related to cellular automata
Index to 2D 5Neighbor Cellular Automata
Index to Elementary Cellular Automata


MATHEMATICA

CAStep[rule_, a_]:=Map[rule[[10#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=334; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1n, k1+n]], {j, k+1n, k1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[on[[i+1]]on[[i]], {i, 1, Length[on]1}] (* Difference at each stage *)


CROSSREFS

Cf. A271281.
Sequence in context: A178756 A271696 A271090 * A272312 A272117 A271159
Adjacent sequences: A271281 A271282 A271283 * A271285 A271286 A271287


KEYWORD

sign,easy


AUTHOR

Robert Price, Apr 03 2016


STATUS

approved



