login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271206
Number T(n,k) of set partitions of [n] having exactly k triples (t,t+1,t+2) such that t+i is in block b+i for some b; triangle T(n,k), n>=0, 0<=k<=max(0,n-2), read by rows.
3
1, 1, 2, 4, 1, 10, 4, 1, 28, 18, 5, 1, 89, 77, 30, 6, 1, 315, 345, 164, 45, 7, 1, 1233, 1617, 919, 299, 63, 8, 1, 5285, 8003, 5262, 2011, 492, 84, 9, 1, 24583, 41871, 31180, 13611, 3857, 754, 108, 10, 1, 123062, 231474, 191889, 94020, 30128, 6755, 1095, 135, 11, 1
OFFSET
0,3
LINKS
EXAMPLE
T(3,1) = 1: 1|2|3.
T(4,1) = 4: 12|3|4, 14|2|3, 1|24|3, 1|2|34.
T(5,1) = 18: 123|4|5, 125|3|4, 12|35|4, 12|3|45, 13|24|5, 1|23|4|5, 145|2|3, 14|25|3, 14|2|35, 14|2|3|5, 15|24|3, 1|245|3, 1|24|35, 1|24|3|5, 15|2|34, 1|25|34, 1|2|345, 1|2|34|5.
T(5,2) = 5: 12|3|4|5, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45.
T(5,3) = 1: 1|2|3|4|5.
Triangle T(n,k) begins:
: 0 : 1;
: 1 : 1;
: 2 : 2;
: 3 : 4, 1;
: 4 : 10, 4, 1;
: 5 : 28, 18, 5, 1;
: 6 : 89, 77, 30, 6, 1;
: 7 : 315, 345, 164, 45, 7, 1;
: 8 : 1233, 1617, 919, 299, 63, 8, 1;
: 9 : 5285, 8003, 5262, 2011, 492, 84, 9, 1;
: 10 : 24583, 41871, 31180, 13611, 3857, 754, 108, 10, 1;
MAPLE
b:= proc(n, i, t, m) option remember; expand(`if`(n=0, 1, add((v->
`if`(t and v, x, 1)*b(n-1, j, v, max(m, j)))(j=i+1), j=1..m+1)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 1, false, 0)):
seq(T(n), n=0..14);
MATHEMATICA
b[n_, i_, t_, m_] := b[n, i, t, m] = Expand[If[n==0, 1, Sum[Function[v, If[t && v, x, 1]*b[n-1, j, v, Max[m, j]]][j==i+1], {j, 1, m+1}]]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 1, False, 0]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Feb 05 2017, translated from Maple *)
CROSSREFS
Column k=0 gives A271207.
Row sums give A000110.
Cf. A185982.
Sequence in context: A373756 A102405 A363575 * A211244 A228337 A114506
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Apr 01 2016
STATUS
approved