OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
FORMULA
a(n) = Sum_{k=0..n}(Sum_{j=0..n+1}(binomial(j,n-k-j)*3^(-n+k+2*j)*2^(n-k-j)*binomial(n+1,j))).
a(n) ~ (3+2*sqrt(2))^(n+2) / (2^(5/4) * sqrt(Pi*n)). - Vaclav Kotesovec, Apr 01 2016
D-finite with recurrence: (n+1)*a(n) +(-17*n-4)*a(n-1) +(97*n-57)*a(n-2) +(-191*n+280)*a(n-3) +30*(n-2)*a(n-4)=0. - R. J. Mathar, Jan 25 2020
MATHEMATICA
CoefficientList[Series[-(Sqrt[x^2 - 6 x + 1] + 3 x - 1)/((7 x - 1) Sqrt[x^2 - 6 x + 1] + x^2 - 6 x + 1)/x, {x, 0, 20}], x] (* or *)
Table[Sum[Sum[Binomial[j, n - k - j] 3^(-n + k + 2 j) 2^(n - k - j) Binomial[n + 1, j], {j, 0, n + 1}], {k, 0, n}], {n, 0, 20}] (* Michael De Vlieger, Apr 01 2016 *)
PROG
(Maxima)
a(n):=sum(sum(binomial(j, n-k-j)*3^(-n+k+2*j)*2^(n-k-j)*binomial(n+1, j), j, 0, n+1), k, 0, n);
(PARI) for(n=0, 25, print1(sum(k=0, n, (sum(j=0, n+1, (binomial(j, n-k-j)*3^(-n+k+2*j)*2^(n-k-j)*binomial(n+1, j))))), ", ")) \\ G. C. Greubel, Jun 05 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladimir Kruchinin, Apr 01 2016
STATUS
approved