login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the logarithm of the generalized Glaisher-Kinkelin constant A(19) (negated).
1

%I #20 Nov 05 2018 03:04:11

%S 6,3,8,9,4,2,2,3,0,8,8,8,3,7,2,6,0,5,2,2,0,9,7,2,8,6,3,5,2,9,0,1,9,3,

%T 4,7,3,3,7,9,2,0,4,8,5,3,5,7,1,2,9,7,7,0,2,6,9,3,0,7,0,2,4,4,1,8,6,3,

%U 4,2,3,0,5,1,1,7,4,8,4,3,0,2,2,4,0,6,4,8,2,1,4,6,6,9,4,6

%N Decimal expansion of the logarithm of the generalized Glaisher-Kinkelin constant A(19) (negated).

%C The logarithm of the nineteenth Bendersky constant.

%H G. C. Greubel, <a href="/A271179/b271179.txt">Table of n, a(n) for n = 2..2003</a>

%F log(A(19)) = (1/20)*HarmonicNumber(19)*Bernoulli(20) - RiemannZeta'(-19).

%F log(A(19)) = (Bernoulli(20)/20)*(EulerGamma + log(2*Pi) - Zeta'(20)/Zeta(20)).

%e -63.894223088837260522097286352901934733...

%t RealDigits[(BernoulliB[20]/20)*(EulerGamma + Log[2*Pi] - Zeta'[20]/Zeta[20]), 10, 100][[1]]

%Y Cf. A266566, A266274.

%K nonn,cons

%O 2,1

%A _G. C. Greubel_, Apr 01 2016