|
|
A271128
|
|
First differences of number of active (ON,black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 289", based on the 5-celled von Neumann neighborhood.
|
|
1
|
|
|
3, 1, 27, -23, 83, -71, 143, -139, 263, -251, 383, -363, 515, -487, 647, -643, 895, -883, 1143, -1123, 1399, -1355, 1615, -1611, 1955, -1911, 2239, -2235, 2631, -2531, 2791, -2787, 3295, -3283, 3799, -3779, 4311, -4267, 4783, -4779, 5375, -5315, 5871, -5851
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
Initialized with a single black (ON) cell at stage zero.
|
|
REFERENCES
|
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
|
|
LINKS
|
|
|
MATHEMATICA
|
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=289; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Table[on[[i+1]]-on[[i]], {i, 1, Length[on]-1}] (* Difference at each stage *)
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|